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Stick-slip phase transitions in confined solidlike films from an equilibrium perspective
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We investigate the transition from stick to slip conditions in sheared monolayer films confined between two
plane parallel solid substrates. Each substrate consistg afoms rigidly fixed in thg100) configuration of
the face-centered cubic lattice. Shearing of the film is effected in a quasiset@rsible process in view of
the low shear rateson a molecular scalein corresponding laboratory experiments employing sheface
forces apparatugSFA). To mimic operating conditions of the SFA as closely as possible we employ the grand
isostress ensemble in which the temperaflirehe chemical potentigh of the film, the stresg,, exerted
normally on the substrates, and the shear stilggsacting on the film in thex direction are among the
thermodynamic state parameters. We analyze the average transverse alignment of the s(ibstrdbes
registry {a,/’) (where/ is the lattice constant of the substresed its fluctuationg?: = {(a,/ — (@/))?y in
corresponding Monte Carlo simulations. Up to the so-called yield gailit'%/), (a,/) increases withr,;
in the thermodynamic limifT,, reaches its maximum &t¥®%/) and £&2—=. For (a,/)<(a¥®%) the
substrate “sticks” to the film; for a,/)>(a)®%/) the substrate “slips” across the film’s surface. States
characterized bya,/)>(a¥®%/) are inaccessible in the grand isostress ensemble because they are thermo-
dynamically unstable. Thus, the stick-slip phase transition occqraﬁﬁfd/) in the thermodynamic limit. An
analysis of the grand isostress potential indicates that stick-slip transitions can be viewed as continuous phase
transitions where the yield point is an analog of thquid-ga9 critical point. In a finite system the stick-slip
phase transition occurs at rupture poifud"""%") < (/) becaus&? may exceed a system-size-dependent
free-energy barrief.S51063-651X98)01502-5

PACS numbds): 61.20.Ja, 68.45.Nj

[. INTRODUCTION Understanding the rheological properties of such ultrathin,
confined films is therefore of importance from a fundamental
The lifetime and durability of mechanical machines areas well as from an applied technological perspective. Conse-
often determined by friction between movable machine partgjuently, the rheological behavior of confined, molecularly
and wear. Lubricants consisting of, say, organic fluids can béhin films has been under intensive study in recent years,
employed to reduce the impact of these ultimately destrucspurred by the development of a host of scanning probe de-
tive phenomena. Their functioning depends to a large extentices such as the atomic force microsc¢p&M) [4—-8] and
on the nature of the interaction between the fluid and thehe surface forces apparat(8FA) [9—-13], which allow the
solid substrate it lubricatdd]. This is particularly so if the study of such films directly on the nano or molecular scales.
desire of engineers is to miniaturize certain machine parts In essence the SFA consists of two solid substrates tradi-
[2]. In this case the lubricant may become a thin film of ationally covered with molecularly smooth mica sheets
thickness of only one or two molecular layers. The impact of(walls) sandwiching the film of the fluid of interest. On a
such severe confinement is perhaps best illustrated by theolecular length scale the mica sheets may be taken as plane
dramatic increase of the shear viscosity in a hexadecane filparallel. The sandwich is immersed in the bulk fluid main-
of a thickness of two molecular layers, which may exceedained at constant temperature and pressure. Thus, the film is
the bulk shear viscosity by four orders of magnitydg. opento the bulk reservoir, which serves as a thermal and
material reservoir. Once thermodynamic equilibrium is es-
tablished between the film and the reservoir, the temperature
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compressional and shear strains, respectively. inevitably involves the mass of the wall. However, there are
In the latter case exposition to a shear strain is effected byo physical criteria on which the choice of a specific value
attaching a movable stage to the upper wall via a sprindor this mass could be based. Second, even though the wall is
characterized by its spring constdn{3,14,19 and moving a macroscopic object in the SFA experiment, its mass cannot
this stage at some constant velocity in, say, xhdirection  be too much larger than the mass of a film molecule in the
parallel to the film-wall interface. Experimentally it is ob- NEMD simulations because otherwise the wall would remain
served that the upper wall first “sticks” to the film as it were at rest on the time scale on which film molecules move. In
because the upper wall remains stationary. From the knowfact, the ratio of the mass of a single film molecule to that of
spring constant and the measured elongation of the springhe entire wall is sometimes as small as 128,27 so that
the shear stress sustained by the film can be determinedne can expect relaxation phenomena in the film to depend
Beyond a critical shear straifi.e., at the so-called “yield sensibly(and therefore unphysically from an experimental
point,” which corresponds to the maximum shear stress susperspective on this arbitrarily selected wall mas8].
tained by the film the shear stress declines abruptly and theThird, the speed at which the walls are slid in the SFA ex-
upper wall “slips” across the surface of the film. If the stage periment is typically of the order of 10—10 " Aps~1[12]
moves at a sufficiently low speed the walls eventually comeso that under realistic conditions the walls remain practically
to rest again until the critical shear stress is once again astationary on a typical length and time scale of molecular
tained so that the stick-slip cycle repeats itself periodically.relaxation processes. In NEMD simulations of SFA models
This stick-slip cycle, observed for all types of film com- one is therefore ineluctably forced to resort to unrealistically
pounds ranging from long-chaite.g., hexadecaneo sphe- high shear rategeven if one assumes the film to be com-
roidal (e.g., octamethylcyclotetrasiloxargydrocarbon$12]  posed of molecules much heavier than rare gas gtams
has been attributed by Gest al. [16] to the formation of order to obtain a tractable signal-to-noise ratio for the quan-
solidlike films that pin the walls togethéregion of sticking ftities of interest so that the relevance of molecular-scale dy-
and must be made to flow plastically in order for the walls tonamical simulations to boundary lubrication phenomena re-
slip. This suggests that the structure of the walls induces thmains highly questionable.
formation of a solid film when the walls are properly regis- To avoid these problems and in view of the characteristic
tered and that this film “melts” when the walls are moved low shear rates in the actual SFA experiments we employ a
out of the correct registry. As first demonstrated in R&7), “quasistatic” or reversible approach in which the thermody-
such solid films may, in fact, form in “simple”-fluid flms namic state of the film passes through a succession of equi-
between commensurate walls on account of a template effetibrium states, each being distinguished by a differ@ver-
imposed on the film by the discrefee., atomically struc- age lateral alignment of the wallg18,28—32. Equilibrium
tured walls. However, noting that the stick-slip phenomenonproperties of the film can be computed within the framework
is general, in that it is observed in every liquid investigated,of Monte Carlo simulations carried out in various ensembles
and that the yield stress may exhibit hysteresis, Graiigk  designed to capture key characteristics of a corresponding
has argued that mere confinement may so slow mechanic8IFA experiment to a maximum degree. For example, in an
relaxation of the film that flow must be activated on a timeSFA experiment one usually controls the stress applied nor-
scale comparable with the experiment. This more generahally to the wall(i.e., the loadl and the shear strdgs. By
mechanism does not necessarily involve solid films, whichmaking these variables parameters of a statistical physical
can be formed only if thésolidlike) structure of the film and ensemble it was demonstrated in R¢i9,20,28 that details
that of the walls possesses a minimum geometrical compatf the variation of the so-called solvation force with film
ibility. In fact, it was recently demonstrated in a computerthickness are in very good qualitative agreement with corre-
simulation study of a SFA model that formation of solid sponding SFA experiments.
films is not a necessary prerequisite for the existence of a In this paper we apply the methodology developed in
yield stress as observed experimentally]. Formation of [19,20,28 to study stick-slip transitions in confined films
solid films is prevented by walls whose structure is incom-under conditions of fixed normal and shear stresses. By fix-
mensurate with the solidlike structure the film would form ing the shear strain rather than its conjugate st[84s3Z]
under geometrically favorable conditiohs8—20. these investigations are complemented so that an interpreta-
Theoretically many attempts have been made in recertion of the stick-slip transition as a continuous phase transi-
years to elucidate details of stick-slip transitions observed irtion emerges. Within the framework of this interpretation the
SFA experiments. The approaches can generally be groupsteld point may be perceived as an analog of the critical
into two different categories, which may be labeled “dy- point of a fluid. However, unlike the critical point the yield
namical” [21-27 and “quasistatic’[18,28—-33. In the dy-  point is characterized by a divergence of fluctuations of the
namical approaches a stationary nonequilibrium state is craransverse alignment of the walls rather than a divergence of
ated by either applying an external driving fof@1] or by  density fluctuations. While the stick-slip phase transition oc-
explicitly moving a substrate walR2,24—27 in nonequilib-  curs at the yield point only in the thermodynamic limit, a
rium molecular dynamic§NEMD) simulations in order to pronounced system-size effect exists in the relatively small
mimic dynamical aspects of a corresponding SFA experisystems employed in computer simulations. Depending on
ment directly on a molecular scale. However, the relationthe system size the stick-slip transition is shifted to so-called
ship between NEMD simulationg®22,24-27 and SFA ex- “rupture points” prior to the yield point. We will demon-
periments remains obscure for a number of reasons. First, istrate that in a finite system a free enefkggnsity barrier
order to describe the motion of the substrate wall on a physiexists between rupture and yield point that is related to a
cal time scale, an equation of motion needs to be solved thatitical extent of registry fluctuations. The system remains
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view of recent results for the shearing behavior of monolayer
films between thermally coupled wall89]. In the present
model positions of wall atoms in both walls are related via

X =xM+a/,

yA=yf, )
A=7+s,,

where/ is the lattice constans, is the distance between the
walls along thez axis, and the registryr,/ specifies the
relative lateral alignment of the walls ix. If o,=*n (n
e N) the walls are in registry; ifr,= = (n+1)/2 they are out
of registry. Superscripts in Eq.1) refer to lower
(" =—s,/2) and upper wall {zI?!}=+s,/2), respec-
tively.

Interactions between film molecules and wall atoms as
well as among film molecules are assumed to be pairwise
FIG. 1. Sketch of the model system wheyeands, are the side  aqditive. For simplicity we take film molecules to be spheri-

lengths of the lamella in the and in thez directions, respectively cally symmetric. The total configurational energyof the
(see Sec. I). The plane parallel, discrete walls are out of registry system may be written as

measured in terms of, so that the film between the wallgot

shown) is exposed to a shear strain/ where/ is the lattice N-1 N 2 Ns N
constant. In the configuration depicted the film is subjected to com- U= 2 _ E u(rij) + E _ 2 u(ri[jk]) +E Unw(Z;)
pressional T,,) and shear stresse3 ) indicated by arrows that i=1j=i+1 k=1i=1j=1 i=1
point in arbitrarily chosen directions. 2

=:Uge+ >, UKL+ Upw, 2
thermodynamically stable in the sticking regime if the regis- FF kgl FW R @
try fluctuations do not exceed the upper bound imposed by a , 5 9112 -
generalized Gibbs free energy but undergoes a phase tran®fherer;; - =[ri—r;|=[(x=x)*+ (yi—y;)*+(z—z)“]"*is
tion otherwise. the distance between the centers of mass of film moledules

and j located atr; and r;, respectively. Likewise,

=1 = X2+ (yi =yl 2+ (- Z9)2)2 is the dis-

tance between film moleculeand wall atomj located in the
Henceforth we focus on monolayer films consisting of anlower (k=1) or in the upper K=2) wall. In Eq.(2)

assembly oN molecules constrained between two solid sub-

strates that are planar and parallel with each other along the B 0, |z]<s/2

z axis of the laboratory coordinate systgsee Fig. L In Unw(Zi) = w, |z]=s,/2

general, each substrate consists of a number of planes of

atoms parallel with the-y plane. However, in this paper we represents a hard-wall background potential introduced for-

take into account only the plane at the film-wall interfacemally to prevent film molecules from escaping accidentally

(i.e., the surface plapgconsequently neglecting long-range behind the surface plane. However, wall atoms are so

film-wall interactions that result from interactions of film densely packed that in practice film molecules do not interact

molecules with portions of the substrate below the surfacavith the hard-wall background during the course of a simu-

plane[34]. These long-range film-wall interactions, which lation on account of the strongly repulsive film-wall potential

would be important for investigations of, say, wetting phe-u(r[%) at small distances!} . Equation(2) also defines the

nomend 35,36, are subdominant to the effect of mere con-film-film (Ugg) and the film-wall contribution &) to the

finement by the walls for the monolayer films of interest heretotal configurational energy. In E@2), u(r) represents the

[37,38. Thus, we assume a single wall to consist\Nafat-  Lennard-Jong42,6 (LJ) potential, which we employ re-

Il. MODEL SYSTEM

3

u(r)=4e , (4)

oms (wall atomg distributed across thez{directed surface gardless of the nature of the interacting pair of partiies,
plane of areaA,=s,s, according to thg100 configuration  for film-film as well as for(continuou$ film-wall interac-

of the face-centered cubiécc) lattice wheres, ands, de-  tions|. The LJ potential is given by

note the side lengths of the surface plane in xhandy " 6

direction, respectively. In these two directions the film is o\ o

assumed infinite, which is effected by imposing periodic (T (r)

boundary conditions at the planeg/s,==+0.5 and

y/s,=+0.5 so that the center of mass of the film coincideswhere o is the molecular “diameter,”¢ is the well depth,
with the origin of the laboratory coordinate system located aandr =r;; orr =r!} depending on the nature of the interact-
0. Since wall atoms are rigidly fixed, they are thermally de-ing pair. For simplicity we take wall atoms and film mol-
coupled from the film(i.e., the walls are maintained at a ecules to be identical so that all interactions are governed by
temperatureT=0), which is a rather mild assumption in the same set of potential parametgeso}.
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. STATISTICAL THERMODYNAMICS introduce certain ancillary potentials via Legendre transfor-
OF CONFINED FILMS IN THE GRAND ISOSTRESS mations. In particular, we will focus on
AND ISOSTRAIN ENSEMBLES
d=U-TS—uN-T,A;s, (©)]
A. Thermodynamics of strained films
Since we wish to describe shearing of the model ﬁlmsarld

within the framework of a quasistatic approach, we need to d=d-T,A,a,/. (9)
summarize briefly the thermodynamics of confined molecu-
larly thin films detailed in[40,41. From a thermodynamic The exact differentials of the thermodynamic potentidls
perspective it is generally necessary to distinguish betweefndd are obtained from Eq$8) and(9) with the help of Eq.
the systenof interest and itenvironmeniand to specify the (7) as
interaction between the two. In the present case we take as
the system a finite lamella of the confingdfinite) film hav- d®(T,u,A; R Ty, a0/ )= —SAT-Ndu+y'dA,
ing dimensions, X s, X s, [40,41]. The remainder of the film "
and the walls cons{itute the environment. The lamella can TV AAR=Az5,d Tz,
exchange compressional work with the environment by alter- +T,,Ad( ) (10)
ing s, or by changing the distances between the imaginary
planes located at/s,= = 0.5 andy/s,= + 0.5, which act like and
virtual “pistons.”. In addition, the system can be exposed to . N
a shear straim,/ [see Eq(1)]. The mechanical work due to d®(T,u,A;,R,T,,,T,,)=—SdT-Ndu+ y'dA,+ y"A,dR
infinitesimal compressional and shear strains can be ex CASAT, Ay )dT,,,

pressed as
11
AWineen' = = 2 AaTaadSa—ATod(a), ) ynere
where T,z is an element of the stress tensor and can be Y=y =T . (12

viewed as the averag8 component of the force applied .
normally to the areaA, pointing in the « direction Since ® depends on the set of natural variables
(a=x,y,2) [42,43. Note that if the force exerted by the {T,u,A;,R,T,,, T, it is most relevant to operating condi-
lamella on thea-directed face points outward,,; is nega- tions of corresponding SFA experiments in which one con-
tive by convention. ThusdW,,.ch is the mechanical work trols directly T, u, the compressional stress,, and the
done by the system on the environment. Diagonal and offshear stres$,, [19,20,28.

diagonal components of the stress teriBare related to the

work of compressing and shearing the lamella, respectively. B. Molecular description of confined strained films

Note that because the walls are rigid, they cannot be com-
pressed or sheared, which is the reason for the absence of tme
four off-diagonal contributions involvin@,,, T,,, Ty, and

The link between the macroscopic treatment summarized
Sec. Il A and a molecular description is achieved via

Tyx in Eq. (5). (T, 1, A, RT,0,/)=—B"1In WT,u,A,,RT,,,a,/)
Gibbs’ fundamental relation governing an infinitesimal, (13
reversible transformation can be written as and
dU=TdS+ udN—dWechs (6) R
— _p-1
whereU is the internal energyl is the temperature is the (T A2 R T2z, T = =877 IN Y(T, 1, Az R T2z, T
entropy, andu is the chemical potential. However, it is more (14)

convenient to expresbWi,.chin terms ofA, and the shape of established in Ref§32] and[20], respectively. In Eq9(13)
the lamellaR:=s,/s, [40,41]. In terms of these new vari- and(14) B:=1/kgT (kg is Boltzmann’s constaptand
ables

dU=TdS+ udN+y'dA,+ y'AdR+ T, ALds, V=2 exd BuN] 2 exd ST Az
+T,Ad(ay), (7) XQ(N,T;AZ,R,SZ,OZX/)
where the interfacial tensiong’ and y” are related to com-
binations of the diagonal components of the stress tensor = E ~-Q(N,T;A,,R,S,, /) (15)
[40,41,44. The third term on the right-hand side of EJ) N.s,
represents the work of changing the interfacial ateabe-
tween the lamella and the wall whereas the fourth term is
associated with the work done by tfrectangularlamella as
its shapeR is changed at fixed area, . Y: =[E e exd BT A )]
To facilitate a description in terms of independent vari- Nsz o/
ables that can be controlled in actual laboratory experiments
(i.e., T, u, and the strains or their conjugate strejsese XQ(N,T;A,R,s,,a4/) (16)
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are the partition functions of what shall henceforth be calledsystem in which molecules possess only translational degrees
a grand isostraifthermodynamic potentiab, partition func-  of freedom,A is the thermal de Broglie wavelendih7], and

tion )) and a grand isostress ensemfiteermodynamic po-

tential @, partition functionY) because both represent ther-

modynamically open systems but in the former a zN;:J drNexd — BU(M:A, ,R;s,,a,/)] (18
thermodynamic state is specified by fixing the shear strain wN

a,/ as a natural parameter whereas the conjugate shear

stressT,, is a fixed state variable of the latt¢45]. The

) . ! is the configurational integral where the integration extends
shorthand notatioly s - introduced in Eq(15) represents

over the N-dimensional hypervolum&™ in configuration

the double sum oM ands,. In Egs.(15) and(16) [46] space.
Properties of interest in this work are the shear stlegs
Q:= Zy 17) its conjugate straimr,/’, and fluctuations of these quantities.
" NIASN Molecular expressions for these quantities can be derived

from EQs.(10), (11), and(13)—(18). For example, from Eqgs.
is the canonical partition function in the classical limit for a (11), (14), and(16) it is straightforward to show that

[ dInY B , Zy
=—p* =—(BY) X - 2 BALay )exd BT A ax ) ——
IT 4x IT ,x N,s, ay/ NI ASN
T.wA, RT,, T.wA, RT,,
=—-Afa/), (29

where the angular brackets represent an ensemble average in the grand isostress ensemble.(EBponEyerifies easily

that
= /3_1{
T,wA, RT,,

In a similar fashion one can derive a molecular expression for the shearBiredsrom Eqs.(10), (13), (15), (17), and(18)
one obtains

PR
2
T2,

alny ° [Py 2 \2
&sz -Y F = _BAZ[«aX/) )—(ax/> ] (20)
T A RT,, L 1A, RT,,

1Sz

oD [Ny _ 1 AN
AZTZX=(—/> =-pB 1(—) =—(BY) 1(2 e — ~. (21)
L) T,wA, RT,, d(ax) T,wA, RT,, N.s NIASN d(e)

The partial derivative ofZy in Eq. (21) can be evaluated two ways leading to mathematically different but physically
equivalent molecular expressions oy, that may be termed “virial” and “force” forms ofT,, [18,39. In the present context
the latter is more transparent. To derive it from E2fl) we rewriteZy in Eq. (18) as

N S,12 sy/2 ay/ zi15,+5,/2 ay/ 21 15,+5,/12
2u=11 [ aa[” ay| dx exi{—pul-: | dx0:(%) 22

=1 J-s,2 syl2 ay/ 'z 1s,—s,/2 ay/ 21 18,—8,/2

defining an auxiliary quantitg, as

N

S,12 syl2 s,12 syl2 ay/zi1s,+ 5,12
ai= [ da [ anll [ aa[” ay | dx exil ~ UL @9

—S,I2 —Sy —s,/2 —syl2 ay/zi1s,—$,/2

By applying Leibniz’s rule for the differentiation of a parameter inted#d] one obtains
8ZN _ :Z_l
d(azl) s,

(g1 (1 = azlz1[s, + 5:/2) — g1 (21 = @bz s, — $4/2)]

=0

oglzy [3:+3:/2
d
+ / d, 291 (z1)

0 (az?)
orlzy[3:—32/2 (24)
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In EqQ. (24) U(X1=a,/ 21 /s,+5,/2)=U(ay/2,/s,—5,/2) on account of periodic boundary conditions so that the first two
terms on the right-hand side cancel out as indicated. Introducing now a new fuggtiafined analogously tg,, the above
argument may be repeatdt-1 times, eventually yielding

N __ a9 AR / 2
a(a—x//)__ﬁ WN ( /)eXF[ IBU(r 21,8z, ay )] (5)

whereU is given in Eq.(2). Because of Eq(1) only rf?) depends onw,/ so that Eq(25) can be written more explicitly as

iZy aulal,
a(ax/)——ﬁvadr o X/)exp{ BU(MN;A, RS, /)]
x(2l
=ﬂf Ndr“exp[—ﬂuuN;Az,R.sz,ax/nE E w'(rff! [2]

\% =

=—ﬂf NdrNexq—,BU(rN;AZ,R,sZ,ax/)]FE(Z], (26)
vV

whereu’(r):=duw/dr, x{7:=x;—x?!, andF! is the x component of the force acting on the arkaof the upper wall.
Inserting Eq.(26) into Eq. (21) yields the desired force expression for the shear sffgssnamely,

P

- — (2= _ /(1]
0-,(a,x/) _<Fx >_ <Fx >’ (27)

AT = ( )
T,uA, RT,,

where the angular brackets now represent an ensemble average in the grand isostrain ¢cfsétgblél9) and(20)] and the
far right hand side follows from the principle of mechanical stability.

Another quantity of interest is the shear modulug (see Ref.[43] for notation) obtained by differentiating Eq27)
according to

A §2CI) (9sz )
2Caq:=
a(ax/)z T.wA, RT,, &(a ) T.mhAz RT;,
1 *Zy 1 azy | [*
_ . L PN ~1| y-1
(Y (stz NITASN 9(a,/)? h {y (NESZ NIASN ‘9(“/)” “

where the second line follows directly from E@1). In the first term on the right-hand side of E§8) we have

[2]

P?URY gulal |2
— N FW .
BLNdr o) sexd —pul+B f dr ( X/)> exd — BU], (29)

PZy
I/ )?

where we invoked Eg26) and the same logic applies as beffsee Eqs(22)—(25)]. In Eq. (29) the partial derivative in the
first integrand can be expressed more explicitly as

[2] u’ X_[_2]2

N Ng N Ng x[212
w2 |
)2 2 i h[2] -2 2| rl212 27 Y pl213]” (30
ij

P [
i=1j=1 I] rij

)
a( ax/)z a( ax/
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Because of Eq(26) the squared partial derivative b3}, in
the second integral in Eq29) corresponds toR}?!)? while
the second term on the second line of E@B8) equals
B(F!21Y2 [see Egs(21) and (26)]. Thus, with these identifi-
cations one obtains from E(8)

__ B/ pee an?] 1/ 0URy \ <
== [(F) (PB4 - (5058 ) S0
<0 >'0
(31)

where the positive contribution exceeds the negative one iB3 880

magnitude up to the yield poif#9]. Equation(31) shows
that c,, is related to fluctuations of the component of the

force exerted by the lamella on the upper substrate and to thg1.987

mean curvaturglast term in Eq.(31)] of the lamella-wall

configurational energy hyperplane. For symmetry reasonsi.987
identically the same expression is obtained by replacing in1.987

Eq. (31) U, by UL, andF?! by FIY | respectively.
It is important to realize that,, can also be computed in
the grand isostress ensemble via

B ( T,y
- (e

PP
I/ )?

T.wA, RT,, Twhz Ry,

[a( ax//asz)]T,M’Az RT4,

P
AT 20?

2
z

T A, RT,,

(32

which follows directly from Eqs(10) and (11). Employing
Eq. (20), the definition ofc,, given in Eq.(28), and Eqs(31)
and(32) can be used to arrive at

1 1

Cas= = =0.
BAL () ()] BAL(ay/ (@, ))?)
(33

Equation(33) is one of the key results on which the present

description of stick-slip transitions in confined films rests.

C. The grand isostress potential in the Gaussian limit
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TABLE I. Second {,) and fourth central momentg.() of the
probability P(a,/;{ay/)) obtained in grand isostress ensemble
Monte Carlo simulations for different interfacial are&sand shear
stressed,, at T* =1.00, u* = —11.0, andT},= — 1.00. Also listed
is the fourth-order cumularnd , [see Eq(36)], which should vanish
identically if P(ay/;{ay/)) is Gaussiar(see text

A* TE, 10u, 107u, U,
63.880 0.00 4.314 5.622 —0.006
63.880 0.50 4.490 6.295 —0.041
63.880 1.00 4.917 7.507 —0.035
63.880 1.50 6.019 12.047 —0.108
3.880 1.60 6.485  14.354 —0.138
1.65rupture point
91.987 0.00 3.034 2.778 —0.006
0.50 3.069 2.804 0.007
91.987 1.00 3.392 3.505 -0.015
1.50 4.164 5.424 —-0.043
1.60 4.492 6.628 —0.095
91.987 1.70 4.824 7.545 —-0.081
91.987 1.80 5.388  10.826 —0.169
91.987 1.85rupture point
163.533 0.00 1.688 0.843 0.014
163.533 0.50 1.754 0.907 0.017
163.533 1.00 1.882 1.046 0.016
163.533 1.50 2.316 1.607 0.001
163.533 2.00 3.708 4.764 —0.155
163.533 2.05rupture point
255.520 0.50 1.115 0.363 0.026
255.520 1.00 1.199 0.428 0.007
255.520 2.00 2.197 1.442 0.003
255.520 2.10 2.856 2.854 —0.166
255.520 2.15rupture poin}

where C is a normalization constant. ExpandingHnin a
Taylor series arounda,/") and truncating it after the qua-
dratic term, a Gaussian approximatiorias obtained which
can be expressed as

1
\/277[<(ax/)2>_ <ax/>2]

p| (@ —{a/))?
expl — .
2[{(ax) D) —(ax/)?]

P(ax/;<a’x/>):

(39

In the grand isostress ensemble the shear modulus can B&er normalization such thgt” .d(a,/)P=1. To establish

related to the probabilitf (e, ;{ a,/")) of finding a virtual

the Gaussian character Bf a,/’;(ay/)) under the present

system of this ensemble in a microstate characterized by @nditions, we compute®(a,/;(a,/)) as a histogram in

certain registrya,/. From Eq.(16) one realizes that

Y= 2/ exd BT, Aay/ ]

Z

é Q(N,T)}

=:c—12/ P(ay/{ay/)), (34)

grand isostress ensemble Monte Carlo simulatjd8s20,2§
(see Sec. lll. A convenient measure of the Gaussian charac-
ter of P(a,/';{ay/)) is the fourth-order cumulant defined as

Mg

U4::l__, (36)
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where where we have also invoked E{.9). The second factor on
the far right-hand side of Eq(41) is identified asc,;'

o ,‘ o ) ,‘ through Eqs(19), (20), and(33). Because of Eq(38) one
Mn= f_w d(ay/)(ax/ —(ay/))"Play/(ax/)), neN also has from Eq(40)

(37) .
dd ,dInC

is thenth central moment oP(a,/";{a,/)). For a Gaussian A =B Wa): (42)
distribution U,=0 because it is determined completely by
Mo and u,, that is, all higher moments can be expressed in
terms of the zeroth and second moments. Table | shows th#tserting Eq.(42) into Eq. (41) we obtain
for the numerically generated distributiof a,/’;{a,/)),
|U4| is indeed small even for the largest stresses listed, dIn C=—BA,cid((ay)), (43
which are very close to the values at which the stick-slip
transition occurs in a finite systefsee Sec. IV B One no- ] ) ] ] ]
tices thajU,| increases witiT,,, indicating that the Gauss- which can be integrated proy|ded an equation of state is
ian character is somewhat less well preserved for larger she&nown for c44({@,/)) so that® is completely determined
stresses. We note in passing that this points to the fact thatsee Sec. IV A
strictly  speaking, the Gaussian approximation to
P(ay/;{ay/)) becomes invalid at dirst- or second-order
phase transition because registry fluctuations are no longe
small enough to justify the truncation of the Taylor-series
expansion of IrP after the quadratic term50]. However,
keeping this in mind and becauld,| is still not too large
even for the largest registries listed in Table I, we adopt the
Gaussian form as a suitable lowest-level approximation tc
P(ay/;{ay/)) henceforth(see Sec. IV R

In the present context another, particularly useful, repre-
sentation ofP(a,/;{a,/)) is obtained by inserting Eq433)
into Eq. (35) so that

*
ZX

, W
F{ lg(ax/_<a'x/>)2AzC44(<a'x/>) “
Xexpg — .
2 25
(38
In the thermodynamic limit &,— =) l
lim Play/ (@)= 8ay/ —(a)),  (39) s

*
zx
~

Ay

where § denotes the Dirad function.

For later purposes we also wish to obtain an explicit ex-
pression for the grand isostress potendain terms of the 05 | (b)
average registrya,/y. From Eqgs(14) and(34) one obtains

0.00 0.10 0.20 0.30 0.40

o=-p"1 |n<C‘1Z/ Play/ {ax/)) |. (40) anl*

FIG. 2. The shear stresE;, as a function of the shear strain
Differentiating this with respect to the shear stré&sggives  a,/* for T*=1.00, u*=-11.00.(a) T;,=—1.00; (@): grand
isostrain ensemble, open symbols represent grand isostress results

~ ~ for various areasA} =63.880 (J), 91.987 (©), 163.533 (),
oP = —Afa )= do 255.520 {V), and 574.9211¢). The full curve is a fit to the grand
9Tz 1 WAL RT nex d{a,/) isostrain-ensemble data intended to guide the eye. The dashed line
A, RT,,

corresponds to the Hookean linjgee text The horizontal arrows

Hay) indicate the shear stress at the rupture pdisee text (b) Same as
X\ =7 , (41  (a), but for T*,=—0.50; A* =63.880 (>>), 91.9876(V), 163.533
X T wA, R T, (A), 255.520(<).



57 STICK-SLIP PHASE TRANSITIONS IN CONFINE . .. 1629

10 , ‘ ‘ A. Shear stress and shear modulus
in the grand isostrain ensemble
#0000 In the grand isostrain ensemble the shear sffegsr,/)
0.8 (= .
5 can be computed as an ensemble average vid 2. Re-
N ':'Dnn sults for a monolayer film displayed in Fig. 2 show that
ST oo ] T,(a,/) vanishes for,/* =0.0 and 0.5 for symmetry rea-
2 = sons. Fora,=0.0 the monolayer is solidlike regardless of
= the load(i.e., the value ofT,,). The solidlike structure is
w %47 o ] established from a plot of the order parame®¢k,)/S(0)
[22] in Fig. 3 where the two-dimensional static structure fac-
02 | o ] tor is given by
o 1 N 2
00 ‘ ‘ % s S(k)= | 2 explik-r)) (44)
0.0 0.2 0.4 0.6 0.8 j=1

o l*

and k= (k,ky,0). For a perfectly crystalline layer of film

FIG. 3. The order paramet&k,)/S(0) as a function ofr from

isostrain ensemble Monte Carlo simulations fdr*=1.00,

p*=-11.00, andl},=—-1.00 (J) andT;,=—0.50 (@). The ar-
row indicates the location of the yield point.

IV. RUPTURE AND YIELD POINTS

10.0

In the remainder of this paper all quantities will be given
in the customary dimensionlegse., “reduced”) units[51]
indicated by an asterisk, that is energies will be given in .3 .|
units of €, lengths in units ofr, and temperature in units of
kgT/e. Thermodynamic states considered are exclusively
based uporT*=1.00 andu*=—11.00 for which the LJ
bulk phase is a moderately dense fluid characterized by a
(average number densityn* : =(N)/V* =0.754. Two states
distinguished byT;,=—1.00 and—0.50 are investigated.
Because of* = 1.5985 the walls are very slightly stretched, %00
indicated by a distancer* =1.1303 between nearest-
neighbor wall atoms whereas the minimum of the LJ poten- 45,
tial is atr* =216=1.1225,

Furthermore, we note that the finite lamella of the infinite
film introduced at the beginning of the preceding section is
nothing but a virtual construct, entertained to comply with
the principles of thermodynamics. In principle, the lamella
can constitute any portion of the film. Thus, it is convenient  _
to associate the lamella with the computational cell as far as @ 5
the Monte Carlo simulations to be presented below are con-
cerned. These simulations, carried out in the grand isostress
and isostrain ensembles, employ algorithms fully described o0
in Refs.[20,32. The generation of éhumerical representa-
tion of @ Markov chain of configurations involves attempts
to displace a film molecule at random, to insert a film mol- 5
ecule at a randomly selected point or to remove a randomly
chosen film molecule, to change the separation between the
walls [32], and, in the case of the grand isostress ensemble, . .
to change the registry at random by a small amdang in o ;,!G'f‘:)'r Tq.e* S:hf %romosg lzu%“lals gofqulon-rgfzth_els ggar (Sg;am
addition to the three previous stochgstic processes. BgcaUﬂéZ/: —0.50. The fulll Ii,ne represen.ts r’esults otz)tzained. in ]the grand
attempts to change, affect all NN; distances between film isostrain ensemblfsee Eq(31)]. Also shown are results obtained
molecules and wall atoms and furthermore raf distances i the grand isostress ensemble for various afdagsee Fig. 2 for
between film molecules 8, is altered, one needs to maintain sympoly. The vertical arrows indicate rupture-point locations for
the length of the relaxation period in systems of differentihe various areas,. The yield point is located at the intersection
sizes, that is for different interfacial areas,. This is  petween the full curve and the dashed horizontal line corresponding
achieved by fixing the relative frequency of these attemptso c%,=0. The dashed-dotted horizontal line represents the Hookean
according toN:N:1(s,) (grand isostrain ensemBIE82] and  limit in which c,,=a,. Note that in the isostrain ensemtulg, may
N:N:1(s,):1(a,) (grand isostress ensemp[&0]. become negative far,/ > a)®%/ (see text

0 . .
0.00 0.10 0.20 0.30
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TABLE Il. The set of fit parameter§a,,a,,a,} used to de-  with the solidlike film are somewhat too idealized with re-
scribe the dependence ©f, on the shear strain. The constagtis spect to the SFA experimernsee Sec.)I[18,20,28. The
a quantitative measure of rigidity of the film in the Hookean regimequamative features and trends just discussed are, on the

(i.e., a,/=0.0) [see Eq(47)]. other hand, not altered greatly for severely confined films
. . . . . - even if incommensurate walls are considefé8]. We do
T Iz T2 N a; ay therefore not expect the present results to be qualitatively
1.000 -11.00 -1.00 14323 -271.382 901840 differentif more realistic substrates are emplqygg.
1.000 —11.00 —050 12.805 -258744 911.290 If exposed to a sufficiently small shear straig/* =0.0,

T,{a”) depends linearly on the strain according to

_ Hooke’s law[42] [see Figs. @) and Zb)]. However, as the
molecules atT=0 one expects the rati®(k;)/S(0)=1,  strain increases further the film responds increasingly nonlin-
wherek; is the magnitude of the shortest reciprocal latticeearly so thatT,,(«,/) reaches a maximum, declines, and
vector[22]. Plots of the order paramet&k,)/S(0) in Fig.  eventually vanishes at,= = (n+1)/2 for symmetry reasons

3 show that aix,=0.0 the monolayer films are indeed sol- [18]. The maximum of the shear stress curve, which arises on
idlike; the deviation 0fS5(k;)/S(0) from its ideal value of 1.0  account of the plastic response of the film to sufficiently high
is due to thermal motion of film molecules. Thus, if the walls shear strains, determines the so-called yield peifit®/ .

are in registry == n,ne ) they act like templates in the  Thermodynamic states fow,/'<a®%/ are mechanically
formation of a solidlike monolayer even though the corre-giapie whereas these states become mechanically unstable if
sponding bulk phase is still a liquidee Sec. IV. As the film | / exceedsa?®®/ Thus. for av/<a’®/ the walls

?S progress_ively_shea_red, the deg_r ee of solidlike orde_r diminnsxtick” to the fiIF(n Wh.ile the); can “gl,ip” acX:ross the surface
ishes but is still quite substantial at the yield point. At 4o fim for a,/>a¥®/ so that the yield point separates
a,=0.5 the film is liquidlike as we infer from the sticking from the slipping regime

S(k1)/(0)=0.0. There is no significant depen_dence of the From the definition of the shear modulag, in Eq. (28) it
order parameter oif,, so that apparently confinement ef- . ; ; ;
S . . . . is obvious that at the yield point

fects are dominating the microscopic structure of the film in
accord with earlier findingg37,38.

On the contrary, a comparison between Fig&) zand
2(b) shows that the yield stregthe maximum value of ,,)
is about 15% higher for the larger load, indicating that aFrom this definition and the fact that the yield point repre-
more stable film forms under higher loads. The greater rigidsents a maximum of the shear stress curve it also follows that
ity of the film under higher loads is also reflected by itsCss>0 in the sticking regime d,/ < a¥®%/) and that
greater stiffness in the Hookean regime {'=0). A quan- c44<0 in the slipping regime ¢,/> a{'e'd/’), which can be
titative measure of the stiffness is the cons@agntsee Table verified directly from the plots in Fig. 4. For later purposes it
II), which is about 12% larger for the system exposed to thés useful to represent the variation of the shear modulus with
higher load. Thus, rheological properties of monolayer filmsthe shear strain by an equation of state. It can be obtained by
are significantly influenced by the thermodynamic condi-expandingc,, in terms of higher-order elastic moduli of the
tions. However, we note in passing that walls commensuratanstrained solidlike film via

C44( ax/) | a,/ = aiield/ =0. (45)

o0

1 d%
——= ()= agday)?, (46)

4! 9(a,)? 2 /=0 k=0

e 1 d%cy 2
Caa ay )—C44(0)+§m a/=0(aw) +

where a, corresponds to the shear modulus of a solidlikelations[49]. It is therefore more sensible to obtain the set
film in the Hookean limit ¢,/ =0) (see Figs. 2 and)4 {ay} by fitting the polynomial in Eq(46) to C44( /") over
coefficients{a,,} (k>0) can be viewed as higher-order elas-a certain range of shear strains. In practice an excellent rep-
tic moduli of the unstrained solidlike filMi33]. Molecular ~ resentation ot,,(«a,/) is obtained by truncating the sum in
expressions for the higher-order elastic moduli can be deEd. (46) after the third ternf33], which yields

rived in principle by differentiating,, in Eq. (28) with re-
spect toa,/. For the unstrained solidlike film odd deriva-

; 2k+1 2 2\ (2k+1 i

tives 9 g e ) (@) E Do g vanish |y in Fig. 4 show that in the Hookean regime('=0)
identically when averaged because they involve odd powerg 14~ const, declines steadily with increasing/ up to the

of x{?! [see Eq(30)]. Therefore, Eq(46) involves only even yield point at which by definitiorc,,= 0 [see Eq(45)], and
powers of a,/. Even though the expansion coefficients becomes negative at larger shear strains. The snwlle¢he
could in principle be computed via their molecular expres-more pronounced is the nonlinear, plastic response of the
sions, these turn out to be far too complex to be evaluatefilm to an applied shear strain. It is particularly noteworthy

numerically in grand isostrain ensemble Monte Carlo simu-+that the representation af, is excellent even for states be-

Cas= a0+aZ(ax/)2+a4( a'x/)4+ O[(ax/)B] (47)
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yond the yield point that are mechanically unstable becausthan its grand isostrain counterpart. However, given an esti-
€44<0 [33]. Values for the seffay,a,,a,} are listed in Table mated 5% for the mutual error bars on both data sets these

Il for the thermodynamic states considered here. deviations are considered insignificant.
) S The origin of the rupture points may be rationalized as
B. Rupture points and finite-size effects follows. If (/) is close enough to the yield point there is a

In the grand isostress ensemble, on the other hapds ~ nonvanishing probability ( e,/ ;{ /")) >0 for registries to
positive semidefinite and therefore cannot become negativexceed(a)®%) on average These states ari@ principle
according to Eq(33). Conse_quently, thermodynamic statesinaccessible in the grand isostress ensemble because
characterized by a,/)=(a}®%/) are inaccessible. Since would be negative which is precluded on account of Eq.
c44=0 at the yield point one expects registry fluctuations to(33). One therefore expects any finite film to become ther-
diverge at this point according to E¢83). The restriction modynamically unstable &x/""“"%") prior to the yield point
Caa((ax/))=0 in the grand isostress ensemble as compareg the probability for registries exceeding the yield point is
to the grand isostrain ensemble is akin to the one encoungnzero. In the actual grand isostress ensemble Monte Carlo

tered in studies of liquid-gas phase equilibria employing.imyations 0.5-2% of all configurations generated at

say, the canonical and grand canonical ensembles. Becaugeérupture - ; - ;
the density is fixed in the former, thermodynamic states peréﬁax /) are characterized by registries exceeding

taining to the two-phase liquid-gas regime are <';1ccessiblé“¥leld/> under the present condmons. C.onsequ'e'ntly the f!lm
even though these states anechanicallyunstable, that is, undergoes a Itdransmon from stick to slip gondltlon§ earlier
for these states the isothermal compressibilitythan at (@}°°/). For shear stresses in the interval
kr:=—1N(3VI9P)<O0 in a finite system wher® is the  ToPU<T, =TI (where T5P""™ and T¥¢ correspond to
bulk pressure and is the volume. In the grand canonical the shear stresses at rupture and yield points, respegtively
ensemble, on the other hand, the constraint of fixésllifted one observes a persistent increase of the lateral displacement
so that this ensemble has one additional degree of freedorof the upper substrate wall as a function of the Monte Carlo
One can then prove thai; is positive definite and conse- “time.” This displacement is irregular in that it is character-
quently thermodynamic states in the liquid-gas two-phasézed by short periods of variable length over which the upper
region become inaccessible because of tti@rmodynamic  substrate remains stationary alternating with periods of mo-
instability [46]. tion. Similar effects have been reported experimentally for

The same can be said with regard to the relation betweegqyalane films, which were, however, sheared in real time
grand isostress and isostrain ensembles where the former

one additional degree of freedom compared with the latter
because the registry is not fixddee Eqs.(15) and (16)].
Thus, it is tempting to perceive the average regiétry/) as
the analog of the average densityin the grand canonical Gaussian approximation ®(a,”:(a,”)) is still well justi-

ensemble and to V'em44l;c<(ax/22>_<,ax/>,2 [see EQ.  fied. The decrease of the central moments indicates that
(33)] as the analog okro(N<) —(N)* [46] in this ensemble. p(y /i(a,/)) becomes increasingly peaked arogag/).
T[uls_ notion is supported further by noting that,/) and |5 gther words, registry fluctuations decrease wih[see
Cf‘"" in EqQ. (33) are related to first and second derivatives oqus_ (35) and (39)]. At the same time the location of the
® with respect tdT ,, [see Eqs(19) and(20)] just liken and  rupture point shifts towards the yield point & becomes
xr are related to first and second derivatives of the grandarger, i.e., asP(a,/;{(ay/)) becomes more peaked at
potential ) with respect tou [37]. In this spirit and within ~ (ay/). However, for any finite interfacial ared, there will
the framework of the quasistatic description of the SFA ex-always be a finite spread &(a,/;{ay/)) around{a,/).
periment it seems fruitful to regard the transition from stickBecause of the diminishing extent of registry fluctuations
to slip conditions at the yield point as a continuous phaségi.e., the increasing sharpness Bfa,/;{a,/))] with in-
transition becauseaé)/&sz)T,M,A a1 <(al®9/) remains  Creasing interfacial area one expe_¢ts;“_p‘“re/>=f(Az), a
o br oo e conjecture confirmed by the plots in Fig. 5. However, one
finite and @°®/dT;91 .8, RT,,~> [S€€ EQS(19), (20},  notes from Fig5 a fairly weak dependence ¢&“""%) on
(33), Figs. 2, and 4 the thermodynamic state.

However, an inspection of Figs. 2 and 4 shows that the Furthermore, in the thermodynamic limit
system in the grand isostress ensemble undergoes a transitipm Aﬁw< alPuey = azield/) should hold because of Eq.

from stick to slip conditions prior to the yield point as re- (39) (see Fig. 5. Based on this logic and the previous obser-

flected by a divergence of the registry fluctuations at soyafigns it seems plausible to introduce a “rupture length”

called “rupture points” characterized by

(a!WPUe)y < (Y€1) \We emphasize that up to the rupture

point Eq.(47) provides a good representation@f({ a,/ ")) E(T,,A, R T, T0= V()2 — (/)2 (49

in the grand isostress ensemble with the same set of values

for {ag,a,,a,} obtained by fitting EQ(47) to Caay/) in as a measure of an upper limit for registry fluctuations where

the grand isostrain ensemblgee Fig. 4 Thus, the equal sign holds at the rupture point. Because of &},
Eq. (49 implies

One also notices from Tabll a general trend of., and
M4 to decrease with increasirfy, at fixed T, even for reg-
istries for which the value ofU,| is quite small so that the

Cal{ayV)=calay/) Y{ay,/ V<(aPP"Y). (48)

. _ 1
Closer scrutiny seems to reveal a small but systematic trend Cas=

—, (50)
of ¢4, Obtained in the grand isostress ensemble to be smaller BAE;
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FIG. 5. The rupture-point locatiofa™"%’) as a function of FIG. 6. The rupture length* as a function ofA* ~*[see Eq.

A Y2 for T*=1.00, p*=-11.00, T5,=-1.00 (¢), and (57)] for T*=1.00, w*=-11.00, T5,=-1.00 (O), and
T;,=—0.50 (+). The straight lines represent fits of the empirical T* = —0.50 (+). The straight line is calculated from EG7) using
scaling law[see Eq.(55)] (see text Yield-point locations from  {a, a,} from Table Il and{a,{a¥®%/*)} from the fit of Eq.(55) to
corresponding grand isostrain ensemble Monte Carlo simulationghe simulation data shown in Fig. (Gee text

[(m), T;,=—1.00; (@), T;,= —0.50] agree well with the extrapo-

lated (A7 ~*?=0) grand isostress ensemble data; only grand isoRegyjts plotted in Fig. 6 indicate thdt decreases with in-
stress ensemble data were included in the fit. creasingA, as expected. The dependencetpbn the ther-

. , , ) modynamic state is again weak because the rupture-point
where again the equal sign applies at the rupture point. EqQuigcation itself is found to depend only marginally on the

tion (50) states that in any finite film the degree of plasticity precise nature of the stateee Fig. 5 Comparison with Fig.

(reflected by the value of,,) must not exceed a certain g5 ghows that the rupture-point location shifts towards the
(system-size dependgraritical value for the film to remain  yie|g point over the same range of interfacial areas as it

thermodynamically stable in the sticking regime. The degregpqyid. We emphasize that the yield-point location can be
of plasticity may be cast quantitatively as calculated directly in the grand isostrain ensemble from ei-
ther max, , T,(ax/) or Caslay/)=0 (see Figs. 2 and)4
>=2a2<ax/)+4a4(ax/)3<0, Thus, the reliability of the rupture-point location obtained in
the grand isostress ensemble can be verified by extrapolation
G of (af'P'/) to the thermodynamic limit A,— =) where
(alPPUrey = (¥4, according to the foregoing reasoning
(see Sec. IV Q@

dcyy _
W |<ax/>:<a§'e'd/

that is, by the deviation af,4({ @,/")) from Hookean behav-
ior defined by

dcyy 0 Vias - C. Scaling behavior
day) (ax/). (52 Because of the pronounced system-size dependence of

both (ai®"%) and ¢, it is instructive to investigate the
Note that a Hookean film has no yield point becausescaling behavior of both quantities with,. This is facili-
C44=29>0 [see Eq(47)] and that registry fluctuations can- tated by plotting(a""""%") as a function of /A, in Fig. 5,
not diverge because of which gives a nearly perfect representation of the Monte
Carlo data regardless of the thermodynamic state of the film.
1 Note that in Fig. 5 the yield-pointa®®/) obtained by fit-

(e D—aye %9 ting

BALa= BARG=

Equation(53) shows that for a Hookean film a yield point (al"PUe ) = (gYield )+ i,
does not exist(infinite-system limif. Thus, a solidlike \/_z
Hookean film cannot be liquified by applying a shear strain. ) ) ) eld ]
Employing once again the analogy between yield and© the simulation datétaking (a;““/) anda as fit param-
(liquid-gag critical points advocated here, a Hookean film eters in a least-squares fashion agrees very well wiff'/

may be viewed as an idealization in the spirit of the ideal-gasletermined independently in a corresponding grand isostrain

a<o0 (55

model. ensemble Monte Carlo simulation under the same thermody-
To estimate the rupture length we employ E@E) and  namic conditions. The empirical scaling law fou}*""%")
(50) and get given in Eq.(55) may be employed in Eq47) to expres<a,
at the rupture point in terms oA, and the parametea.
&={BA ag+a al’PU" )2+ a,( al P )AL L2 Noting thatc,((al®%))=0 one obtains the scaling rela-

(54  tion
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e dcyy 1 . tively. This can be demonstrated by integrating &@) with
Ca{ay®'Y))=a d( A, A, 7+ 0O(A; ) the aid of Eq{(47) and inserting the resulting expression into
y=(a¥eld) Eq. (40). Based upon the Gaussian approximation for
(56)  P(ay/;{ay/)) (which should be valid only approximately
at the rupture point, see Sec. Il) Bne eventually arrives at
in a macroscopic systerti.e., asA,—x), which is again
determined by the degree of plasticfsee Eq.(51)]. Since R ao a, a,
the rupture-point location coincides with the yield point ac- d=A, ?<ax/>2+ Z<a/>4+ €<ax/>6 =0, (58
cording to Eq.(55) in the thermodynamic limit, it is not
surprising that,, vanishes a#,—«. One therefore expects
the rupture length to vanish in that limit too. From E¢s4)

: ! . which is a physically sensible expression becadse0 for
and (56) one obtains the scaling relation for the rupture

the unsheared solidlike film and becaueincreases the

oo more the film is exposed to a shear stress. This follows from
Egs.(47) and (58) because of

dcy, -1/2 " o

&=|Bagr—x _ [AY2+0(A)] )
<ax/ > (ax/>:<a¥|eld/> 4 | | |

Tay ~ Al B0t e Y+ ag(a))
dc ~1/2 ay
~ ﬂa—M’, A; Y4 57) | | )
d{a,/) () =(a®) =Afa/VCal{ay/))=0 Y{a,/Y<(a)®/).

(59
which is confirmed by the plot in Fig. 6. In other words, the

critical registry fluctuations at the rupture point are related tOHowever it is more convenient to turn to the corresponding

the degree of plasticity at the yield point. It is furthermore )
noteworthy from the plot that the dependencegpfon the (generalized Gibhsfree energy den5|ty rather than employ

interfacial area is in accord with the scaling law despite théng the thermodynamic potentidh itself. Therefore, we in-
relative smallness of the simulation cells employed. troduced: —A; 1 which is an intensive quantity. Let us
Another interesting observation can be made from the .
scaling law in Eq.(56) with respect to the values of the now compute(D((a’“p %)) including only terms up to the
thermodynamic potential at yield and rupture points, respecerder of O(A, 12) "From Eqgs.(55) and (58) we obtain

a
,3A3/2[<( rupture/)2> < rupture/>2]

Ad:= CDyieId_ q)rupturez —aA, Vo < rupture/>) ==

1
=—a 71A73/2_ 2 y|eld/ Aflzo, 60
B z grz (e T d(a ) — (Y z (60

which is the generalized Gibbs free-energy density barrier = . . oo .
overcomeA®, which decreases with increasing interfacial
for the stick-slip transition at the rupture point for a system

with finite interfacial area. Equatiof®0) shows that the free area. Because of E58) the generalized Gibbs free-energy

energy density barrier depends on the degree of plast|C|t9|enSItyq’<q’ruptureWax/><<ampture/> so that the thresh-

defined in Eq.(51) of the sheared film at the yield point. 14 yalue Ad is approached from above. Thus, because

Because of Eq(33) this is equivalent to saying thatd is (x/)=F(Tz) is a monotonically increasing functiofsee
determined by the rupture length, that is by the critical reg-Figs. 2 and % (and thereforab is a monotonically decreas-
istry fluctuations at the rupture point. The generalized Gibbsng function of T,, the film has to be exposed to a suffi-
free-energy density as defined here is positive semidefiniteiently large shear stress before this transition can take place.
becausec,, in the grand isostress ensemble is positiveThis critical stress mcreases with, but cannot exceed the
semidefinite[see Eqg.(33)]. This impliesa<0 (A, finite)
becausé ay'e'd/ ) is the largest possibl@veragg registry in
this ensemble. The generalized Gibbs free-energy density V. DISCUSSION AND CONCLUSIONS

barrier depends on the thermodynamic state throagéa,,

a, [see Eq(51)], and the yield point location. To undergo a In this article we investigated the transition from stick to
transition from stick to slip conditions the system has toslip conditions in monolayer films under shear composed of

yield stress becausded) is positive semidefinite.
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spherically symmetric film molecules that are confined be- That shear-induced melting does rdrive the stick-slip
tween discretely structured, commensurate walls. Shearing tsansition is in accordance with earlier investigations in
effected under conditions closely resembling those of correwhich the shear melting point is located through characteris-
sponding SFA experiments in that the normal load on thdic maxima in the heat capacity, the compressibility, and the
walls is maintained in the simulations as well as the temperagxpansion coefficient of the film and is found to occur only
ture and the chemical potential of the film. Since in an SFAat registries significantly above the yield pojb8]. One also
experiment one usually controls the shear stress acting on ti&ows that film molecules do not diffuse on the typical time
film, we employ the grand isostress ensemble in which thscales of a fluid for all registries up to and significantly

stress tensor componeffit, is a natural parameter of the aPoVe the yield point54]. From the perspective of the grand

relevant thermodynamical potential. From a theoretical perlsostress ensgmble the film V\_/ould therefore have to be_come
ermodynamically unstablprior to melting. However, it

spective it is instructive to supplement these calculations b hould be noted thafter the stick-slip phase transition has

em.ploylng a gorrespondmg gfa”d Isostrain ensemble Irc])ccurred(i.e., when the registry divergethe film will lose
which the relative transverse alignment of the walls is con-

wrolled rather than th Lgate sh ifBss O ) its solidlike structure accompanied by drainage, thus rapidly
rofled rather than the conjugate shear stregs Lur main becoming disordered and therefore liquidlike. In this sense
results can be summarized as follows.

) _the stick-slip transition is theauseof shear-induced melting
(1) The shear modulus can be expressed rigorously iRy the film and triggers it contrary to what was surmised in

terms of registry fluctuations, indicating they, is positive  Ref. [22].
semidefinite[see Eq.(33)]. From this it follows that in the The earlier studied18,30,32,33,39,53also show that
grand isostress ensemble thermodynamic states become Whearing is a continuous process. This notion is once again
stable if the(average registry (a,/") exceeds that of the confirmed here, reflected in particular by the continuous
yield point defined by:44(<a¥'e'd/))=0. At the yield point variation of the shear modulus with the shear stress in the
registry fluctuations diverge because the shear modulus vagrand isostress ensemble. Because of this one also expects
ishes. Up to the yield point registry fluctuations increasethe grand isostress potential to be a continuous function up to
steadily and monotonically becausg, is a smooth, nonsin- and at the yield point because in an infinite systeg0 is
gular function of(a,/) (see Figs. 2 and)4 thermodynamically permissible. This implies, however, that
(2) In the thermodynamic limitA,— =) a transition from  the first derivative of the grand isostress potenitsdle Eq.
stick to slip conditions will therefore occur at the yield point (191 remains finite at the yield point but that the second

H H _l H 1 1 1T+
wherec;/! is singular so that the stick-slip transition may derivative, related te,; , diverges, which is the “finger-

legitimately be viewed as a phase transition in the thermoP!int” of & continuous phase transition. y
dynamic sense. Perhaps the most prominent continuous phase transition

(3) In a finite system A, <) the stick-slip phase transi- occurs at '_[he crmcall point of a fI_md_at which d.ensqy. fluc
L . LV . tuations diverge while the density itself remains finite.
tion is subject to a finite-size effect so that the transition vield 1

. : . ; ) Based upon the analogyx)““/)<n and c,, < 1 advo-
occurs at rupture points prior to the yield poisee Figs. 2 . o . ! : .
: . ; cated in Sec. IV B it is tempting to associate the stick-slip
and 4. The rupture-point location depends on the film-wall

) . ) g . hase transition with a novel, shear-stress driven critical phe-
interfacial area andy follows a simple empirically eStab“SheOﬁomenon. From this angle the yield point is the associated
scaling law( a/"P""%/)c A 22 (see Fig. 5 so that in the ther-

WG ] : " critical point. In fact, it has been argu¢85] that stick-slip

modynamic limit the locations of rupture and yield points yransitions may arise on account of self-organized criticality

coincide. if a material is exposed to a sufficiently large shear sttess
(4) In a finite system a transition from stick to slip condi- strain, a concept that has been applied recently to friction

tions occurs at a rupture point because there is a nonvanisphenomend56]. Consequently, the rupture point has to be

ing probability for the registry to excee(dx{'e'd/) on aver- viewed as a shear-critical point shifted on account of the

age due to nonvanishing registry fluctuations. For registriegartificial) finiteness of the system. The rupture lengths a

above the yield point,, would be negative which is pre- quantitative measure of this shift, vanishing only in the ther-

cluded in the grand isostress ensemble on account of Egnodynamic limit.

(33). Consequently, these fluctuations have to be limited if

the system is to remain in the sticking regime. By introduc-

ing the concept of a rupture length [see Eq.(49)] we ACKNOWLEDGMENTS
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