
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Stick-slip phase transitions in confined solidlike films from an equilibrium perspective
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We investigate the transition from stick to slip conditions in sheared monolayer films confined between two
plane parallel solid substrates. Each substrate consists ofNs atoms rigidly fixed in the~100! configuration of
the face-centered cubic lattice. Shearing of the film is effected in a quasistatic~reversible! process in view of
the low shear rates~on a molecular scale! in corresponding laboratory experiments employing thesurface
forces apparatus~SFA!. To mimic operating conditions of the SFA as closely as possible we employ the grand
isostress ensemble in which the temperatureT, the chemical potentialm of the film, the stressTzz exerted
normally on the substrates, and the shear stressTzx acting on the film in thex direction are among the
thermodynamic state parameters. We analyze the average transverse alignment of the substrates~i.e., the
registry! ^axl & ~wherel is the lattice constant of the substrate! and its fluctuationsj2:5Š(axl 2^axl &)2

‹ in
corresponding Monte Carlo simulations. Up to the so-called yield point^ax

yieldl &, ^axl & increases withTzx ;
in the thermodynamic limitTzx reaches its maximum at̂ax

yieldl & and j2→`. For ^axl &<^ax
yieldl & the

substrate ‘‘sticks’’ to the film; for̂ axl &.^ax
yieldl & the substrate ‘‘slips’’ across the film’s surface. States

characterized bŷaxl &.^ax
yieldl & are inaccessible in the grand isostress ensemble because they are thermo-

dynamically unstable. Thus, the stick-slip phase transition occurs at^ax
yieldl & in the thermodynamic limit. An

analysis of the grand isostress potential indicates that stick-slip transitions can be viewed as continuous phase
transitions where the yield point is an analog of the~liquid-gas! critical point. In a finite system the stick-slip
phase transition occurs at rupture points^ax

rupturel &,^ax
yieldl & becausej2 may exceed a system-size-dependent

free-energy barrier.@S1063-651X~98!01502-5#

PACS number~s!: 61.20.Ja, 68.45.Nj
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I. INTRODUCTION

The lifetime and durability of mechanical machines a
often determined by friction between movable machine p
and wear. Lubricants consisting of, say, organic fluids can
employed to reduce the impact of these ultimately destr
tive phenomena. Their functioning depends to a large ex
on the nature of the interaction between the fluid and
solid substrate it lubricates@1#. This is particularly so if the
desire of engineers is to miniaturize certain machine p
@2#. In this case the lubricant may become a thin film o
thickness of only one or two molecular layers. The impact
such severe confinement is perhaps best illustrated by
dramatic increase of the shear viscosity in a hexadecane
of a thickness of two molecular layers, which may exce
the bulk shear viscosity by four orders of magnitude@3#.

*Electronic address: bordarie@cpma.u-psud.fr
†Electronic address: M.Schoen@physik.tu-berlin.

schoen@wpta2.physik.uni-wuppertal.de
‡Electronic address: fuchs@cpma.u-psud.fr
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Understanding the rheological properties of such ultrath
confined films is therefore of importance from a fundamen
as well as from an applied technological perspective. Con
quently, the rheological behavior of confined, molecula
thin films has been under intensive study in recent ye
spurred by the development of a host of scanning probe
vices such as the atomic force microscope~AFM! @4–8# and
the surface forces apparatus~SFA! @9–13#, which allow the
study of such films directly on the nano or molecular scal

In essence the SFA consists of two solid substrates tr
tionally covered with molecularly smooth mica shee
~walls! sandwiching the film of the fluid of interest. On
molecular length scale the mica sheets may be taken as p
parallel. The sandwich is immersed in the bulk fluid ma
tained at constant temperature and pressure. Thus, the fi
open to the bulk reservoir, which serves as a thermal a
material reservoir. Once thermodynamic equilibrium is e
tablished between the film and the reservoir, the tempera
and the chemical potential of the film are fixed. By electr
mechanical means the separation and the transverse a
ment between the walls can be manipulated with nearly m
lecular precision so that the confined film can be expose

,
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1622 57BORDARIER, SCHOEN, AND FUCHS
compressional and shear strains, respectively.
In the latter case exposition to a shear strain is effected

attaching a movable stage to the upper wall via a spr
characterized by its spring constantk @3,14,15# and moving
this stage at some constant velocity in, say, thex direction
parallel to the film-wall interface. Experimentally it is ob
served that the upper wall first ‘‘sticks’’ to the film as it we
because the upper wall remains stationary. From the kn
spring constant and the measured elongation of the sp
the shear stress sustained by the film can be determi
Beyond a critical shear strain~i.e., at the so-called ‘‘yield
point,’’ which corresponds to the maximum shear stress s
tained by the film! the shear stress declines abruptly and
upper wall ‘‘slips’’ across the surface of the film. If the stag
moves at a sufficiently low speed the walls eventually co
to rest again until the critical shear stress is once again
tained so that the stick-slip cycle repeats itself periodical

This stick-slip cycle, observed for all types of film com
pounds ranging from long-chain~e.g., hexadecane! to sphe-
roidal ~e.g., octamethylcyclotetrasiloxane! hydrocarbons@12#
has been attributed by Geeet al. @16# to the formation of
solidlike films that pin the walls together~region of sticking!
and must be made to flow plastically in order for the walls
slip. This suggests that the structure of the walls induces
formation of a solid film when the walls are properly reg
tered and that this film ‘‘melts’’ when the walls are move
out of the correct registry. As first demonstrated in Ref.@17#,
such solid films may, in fact, form in ‘‘simple’’-fluid films
between commensurate walls on account of a template e
imposed on the film by the discrete~i.e., atomically struc-
tured! walls. However, noting that the stick-slip phenomen
is general, in that it is observed in every liquid investigat
and that the yield stress may exhibit hysteresis, Granick@12#
has argued that mere confinement may so slow mecha
relaxation of the film that flow must be activated on a tim
scale comparable with the experiment. This more gen
mechanism does not necessarily involve solid films, wh
can be formed only if the~solidlike! structure of the film and
that of the walls possesses a minimum geometrical com
ibility. In fact, it was recently demonstrated in a compu
simulation study of a SFA model that formation of sol
films is not a necessary prerequisite for the existence o
yield stress as observed experimentally@18#. Formation of
solid films is prevented by walls whose structure is inco
mensurate with the solidlike structure the film would for
under geometrically favorable conditions@18–20#.

Theoretically many attempts have been made in rec
years to elucidate details of stick-slip transitions observed
SFA experiments. The approaches can generally be grou
into two different categories, which may be labeled ‘‘d
namical’’ @21–27# and ‘‘quasistatic’’@18,28–33#. In the dy-
namical approaches a stationary nonequilibrium state is
ated by either applying an external driving force@21# or by
explicitly moving a substrate wall@22,24–27# in nonequilib-
rium molecular dynamics~NEMD! simulations in order to
mimic dynamical aspects of a corresponding SFA exp
ment directly on a molecular scale. However, the relati
ship between NEMD simulations@22,24–27# and SFA ex-
periments remains obscure for a number of reasons. Firs
order to describe the motion of the substrate wall on a ph
cal time scale, an equation of motion needs to be solved
y
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inevitably involves the mass of the wall. However, there a
no physical criteria on which the choice of a specific val
for this mass could be based. Second, even though the w
a macroscopic object in the SFA experiment, its mass can
be too much larger than the mass of a film molecule in
NEMD simulations because otherwise the wall would rem
at rest on the time scale on which film molecules move.
fact, the ratio of the mass of a single film molecule to that
the entire wall is sometimes as small as 1/8@26,27# so that
one can expect relaxation phenomena in the film to dep
sensibly ~and therefore unphysically from an experimen
perspective! on this arbitrarily selected wall mass@28#.
Third, the speed at which the walls are slid in the SFA e
periment is typically of the order of 1029– 1027 Å ps21 @12#
so that under realistic conditions the walls remain practica
stationary on a typical length and time scale of molecu
relaxation processes. In NEMD simulations of SFA mod
one is therefore ineluctably forced to resort to unrealistica
high shear rates~even if one assumes the film to be com
posed of molecules much heavier than rare gas atoms! in
order to obtain a tractable signal-to-noise ratio for the qu
tities of interest so that the relevance of molecular-scale
namical simulations to boundary lubrication phenomena
mains highly questionable.

To avoid these problems and in view of the characteris
low shear rates in the actual SFA experiments we emplo
‘‘quasistatic’’ or reversible approach in which the thermod
namic state of the film passes through a succession of e
librium states, each being distinguished by a different~aver-
age! lateral alignment of the walls@18,28–32#. Equilibrium
properties of the film can be computed within the framewo
of Monte Carlo simulations carried out in various ensemb
designed to capture key characteristics of a correspon
SFA experiment to a maximum degree. For example, in
SFA experiment one usually controls the stress applied n
mally to the wall~i.e., the load! and the shear stress~es!. By
making these variables parameters of a statistical phys
ensemble it was demonstrated in Refs.@19,20,28# that details
of the variation of the so-called solvation force with film
thickness are in very good qualitative agreement with co
sponding SFA experiments.

In this paper we apply the methodology developed
@19,20,28# to study stick-slip transitions in confined film
under conditions of fixed normal and shear stresses. By
ing the shear strain rather than its conjugate stress@31,32#
these investigations are complemented so that an interp
tion of the stick-slip transition as a continuous phase tran
tion emerges. Within the framework of this interpretation t
yield point may be perceived as an analog of the criti
point of a fluid. However, unlike the critical point the yiel
point is characterized by a divergence of fluctuations of
transverse alignment of the walls rather than a divergenc
density fluctuations. While the stick-slip phase transition o
curs at the yield point only in the thermodynamic limit,
pronounced system-size effect exists in the relatively sm
systems employed in computer simulations. Depending
the system size the stick-slip transition is shifted to so-ca
‘‘rupture points’’ prior to the yield point. We will demon-
strate that in a finite system a free energy~density! barrier
exists between rupture and yield point that is related t
critical extent of registry fluctuations. The system rema
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57 1623STICK-SLIP PHASE TRANSITIONS IN CONFINED . . .
thermodynamically stable in the sticking regime if the reg
try fluctuations do not exceed the upper bound imposed b
generalized Gibbs free energy but undergoes a phase tr
tion otherwise.

II. MODEL SYSTEM

Henceforth we focus on monolayer films consisting of
assembly ofN molecules constrained between two solid su
strates that are planar and parallel with each other along
z axis of the laboratory coordinate system~see Fig. 1!. In
general, each substrate consists of a number of plane
atoms parallel with thex-y plane. However, in this paper w
take into account only the plane at the film-wall interfa
~i.e., the surface plane!, consequently neglecting long-rang
film-wall interactions that result from interactions of film
molecules with portions of the substrate below the surf
plane @34#. These long-range film-wall interactions, whic
would be important for investigations of, say, wetting ph
nomena@35,36#, are subdominant to the effect of mere co
finement by the walls for the monolayer films of interest he
@37,38#. Thus, we assume a single wall to consist ofNs at-
oms ~wall atoms! distributed across the (z-directed! surface
plane of areaAz5sxsy according to the~100! configuration
of the face-centered cubic~fcc! lattice wheresx and sy de-
note the side lengths of the surface plane in thex and y
direction, respectively. In these two directions the film
assumed infinite, which is effected by imposing period
boundary conditions at the planesx/sx560.5 and
y/sy560.5 so that the center of mass of the film coincid
with the origin of the laboratory coordinate system located
0. Since wall atoms are rigidly fixed, they are thermally d
coupled from the film~i.e., the walls are maintained at
temperatureT50), which is a rather mild assumption i

FIG. 1. Sketch of the model system wheresx andsz are the side
lengths of the lamella in thex and in thez directions, respectively
~see Sec. III!. The plane parallel, discrete walls are out of regis
measured in terms ofax so that the film between the walls~not
shown! is exposed to a shear strainaxl where l is the lattice
constant. In the configuration depicted the film is subjected to c
pressional (Tzz) and shear stresses (Tzx) indicated by arrows tha
point in arbitrarily chosen directions.
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view of recent results for the shearing behavior of monola
films between thermally coupled walls@39#. In the present
model positions of wall atoms in both walls are related v

xi
[2]5xi

[1]1axl ,

yi
[2]5yi

[1] , ~1!

zi
[2]5zi

[1]1sz ,

wherel is the lattice constant,sz is the distance between th
walls along thez axis, and the registryaxl specifies the
relative lateral alignment of the walls inx. If ax56n (n
PN) the walls are in registry; ifax56(n11)/2 they are out
of registry. Superscripts in Eq.~1! refer to lower
($zi

[1]%52sz/2) and upper wall ($zi
[2]%51sz/2), respec-

tively.
Interactions between film molecules and wall atoms

well as among film molecules are assumed to be pairw
additive. For simplicity we take film molecules to be sphe
cally symmetric. The total configurational energyU of the
system may be written as

U5 (
i 51

N21

(
j 5 i 11

N

u~r i j !1 (
k51

2

(
i 51

N

(
j 51

Ns

u~r i j
[k] !1(

i 51

N

uhw~zi !

5:UFF1 (
k51

2

UFW
[k] 1UHW , ~2!

wherer i j :5ur i2r j u5@(xi2xj )
21(yi2yj )

21(zi2zj )
2#1/2 is

the distance between the centers of mass of film moleculi
and j located at r i and r j , respectively. Likewise,
r i j

[k] :5@(xi2xj
[k] )21(yi2yj

[k] )21(zi2zj
[k] )2#1/2 is the dis-

tance between film moleculei and wall atomj located in the
lower (k51) or in the upper (k52) wall. In Eq. ~2!

uhw~zi !5H 0, uzi u,sz/2

`, uzi u>sz/2
~3!

represents a hard-wall background potential introduced
mally to prevent film molecules from escaping accidenta
behind the surface plane. However, wall atoms are
densely packed that in practice film molecules do not inter
with the hard-wall background during the course of a sim
lation on account of the strongly repulsive film-wall potent
u(r i j

[k] ) at small distancesr i j
[k] . Equation~2! also defines the

film-film ( UFF) and the film-wall contribution (UFW
[k] ) to the

total configurational energy. In Eq.~2!, u(r ) represents the
Lennard-Jones~12,6! ~LJ! potential, which we employ re-
gardless of the nature of the interacting pair of particles@i.e.,
for film-film as well as for ~continuous! film-wall interac-
tions#. The LJ potential is given by

u~r !54eF S s

r D 12

2S s

r D 6G , ~4!

wheres is the molecular ‘‘diameter,’’e is the well depth,
andr 5r i j or r 5r i j

[k] depending on the nature of the interac
ing pair. For simplicity we take wall atoms and film mo
ecules to be identical so that all interactions are governed
the same set of potential parameters$e,s%.

-
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1624 57BORDARIER, SCHOEN, AND FUCHS
III. STATISTICAL THERMODYNAMICS
OF CONFINED FILMS IN THE GRAND ISOSTRESS

AND ISOSTRAIN ENSEMBLES

A. Thermodynamics of strained films

Since we wish to describe shearing of the model fil
within the framework of a quasistatic approach, we need
summarize briefly the thermodynamics of confined mole
larly thin films detailed in@40,41#. From a thermodynamic
perspective it is generally necessary to distinguish betw
the systemof interest and itsenvironmentand to specify the
interaction between the two. In the present case we tak
the system a finite lamella of the confined~infinite! film hav-
ing dimensionssx3sy3sz @40,41#. The remainder of the film
and the walls constitute the environment. The lamella
exchange compressional work with the environment by al
ing sz or by changing the distances between the imagin
planes located atx/sx560.5 andy/sy560.5, which act like
virtual ‘‘pistons.’’. In addition, the system can be exposed
a shear strainaxl @see Eq.~1!#. The mechanical work due to
infinitesimal compressional and shear strains can be
pressed as

dWmech:52(
a

AaTaadsa2AzTzxd~axl !, ~5!

where Tab is an element of the stress tensor and can
viewed as the averageb component of the force applie
normally to the areaAa pointing in the a direction
(a5x,y,z) @42,43#. Note that if the force exerted by th
lamella on thea-directed face points outward,Tab is nega-
tive by convention. Thus,dWmech is the mechanical work
done by the system on the environment. Diagonal and
diagonal components of the stress tensorT are related to the
work of compressing and shearing the lamella, respectiv
Note that because the walls are rigid, they cannot be c
pressed or sheared, which is the reason for the absence o
four off-diagonal contributions involvingTxz , Tyz , Txy , and
Tyx in Eq. ~5!.

Gibbs’ fundamental relation governing an infinitesim
reversible transformation can be written as

dU5TdS1mdN2dWmech, ~6!

whereU is the internal energy,T is the temperature,S is the
entropy, andm is the chemical potential. However, it is mo
convenient to expressdWmechin terms ofAz and the shape o
the lamellaR:5sx /sy @40,41#. In terms of these new vari
ables

dU5TdS1mdN1g8dAz1g9AzdR1TzzAzdsz

1TzxAzd~axl !, ~7!

where the interfacial tensionsg8 andg9 are related to com-
binations of the diagonal components of the stress ten
@40,41,44#. The third term on the right-hand side of Eq.~7!
represents the work of changing the interfacial areaAz be-
tween the lamella and the wall whereas the fourth term
associated with the work done by the~rectangular! lamella as
its shapeR is changed at fixed areaAz .

To facilitate a description in terms of independent va
ables that can be controlled in actual laboratory experime
~i.e., T, m, and the strains or their conjugate stresses!, we
s
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introduce certain ancillary potentials via Legendre transf
mations. In particular, we will focus on

F5U2TS2mN2TzzAzsz ~8!

and

F̂5F2TzxAzaxl . ~9!

The exact differentials of the thermodynamic potentialsF

andF̂ are obtained from Eqs.~8! and~9! with the help of Eq.
~7! as

dF~T,m,Az ,R,Tzz,axl !52SdT2Ndm1g8dAz

1g9AzdR2AzszdTzz

1TzxAzd~axl ! ~10!

and

dF̂~T,m,Az ,R,Tzz,Tzx!52SdT2Ndm1ĝ8dAz1g9AzdR

2AzszdTzz2Az~axl !dTzx ,

~11!

where

ĝ8:5g82Tzxaxl . ~12!

Since F̂ depends on the set of natural variabl
$T,m,Az ,R,Tzz,Tzx% it is most relevant to operating condi
tions of corresponding SFA experiments in which one co
trols directly T, m, the compressional stressTzz, and the
shear stressTzx @19,20,28#.

B. Molecular description of confined strained films

The link between the macroscopic treatment summari
in Sec. III A and a molecular description is achieved via

F~T,m,Az ,R,Tzz,axl !52b21 ln Y~T,m,Az ,R,Tzz,axl !

~13!

and

F̂~T,m,Az ,R,Tzz,Tzx!52b21 ln Y~T,m,Az ,R,Tzz,Tzx!

~14!

established in Refs.@32# and @20#, respectively. In Eqs.~13!
and ~14! b:51/kBT (kB is Boltzmann’s constant! and

Y:5(
N

exp@bmN#(
sz

exp@bTzzAzsz#

3Q~N,T;Az ,R,sz ,axl !

5F (
N,sz

•••Q~N,T;Az ,R,sz ,axl !G ~15!

and

Y:5F (
N,sz

•••(
axl

exp@bTzxAz~axl !#

3Q~N,T;Az,R,sz,axl !G ~16!
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are the partition functions of what shall henceforth be cal
a grand isostrain~thermodynamic potentialF, partition func-
tion Y) and a grand isostress ensemble~thermodynamic po-
tential F̂, partition functionY) because both represent the
modynamically open systems but in the former
thermodynamic state is specified by fixing the shear st
axl as a natural parameter whereas the conjugate s
stressTzx is a fixed state variable of the latter@45#. The
shorthand notation(N,sz

••• introduced in Eq.~15! represents

the double sum onN andsz . In Eqs.~15! and ~16! @46#

Q:5
ZN

N!L3N
~17!

is the canonical partition function in the classical limit for
d

in
ar

system in which molecules possess only translational deg
of freedom,L is the thermal de Broglie wavelength@47#, and

ZN :5E
VN

drNexp@2bU~rN;Az ,R,sz ,axl !# ~18!

is the configurational integral where the integration exten
over the N-dimensional hypervolumeVN in configuration
space.

Properties of interest in this work are the shear stressTzx ,
its conjugate strainaxl , and fluctuations of these quantitie
Molecular expressions for these quantities can be deri
from Eqs.~10!, ~11!, and~13!–~18!. For example, from Eqs
~11!, ~14!, and~16! it is straightforward to show that
ally
t

S ]F̂

]Tzx
D

T,m,Az ,R,Tzz

52b21S ] ln Y

]Tzx
D

T,m,Az ,R,Tzz

52~bY!21F (
N,sz

•••(
axl

bAz~axl !exp@bTzxAz~axl !#
ZN

N!L3NG
52Az^axl &, ~19!

where the angular brackets represent an ensemble average in the grand isostress ensemble. From Eq.~19! one verifies easily
that

S ]2F̂

]Tzx
2 D

T,m,Az ,R,Tzz

5b21H F S ] ln Y

]Tzx D
T,m,Az ,R,Tzz

G 2

2Y21S ]2Y

]Tzx
2 D

T,m,Az ,R,Tzz

J 52bAz@^~axl !2&2^axl &2#. ~20!

In a similar fashion one can derive a molecular expression for the shear stressTzx . From Eqs.~10!, ~13!, ~15!, ~17!, and~18!
one obtains

AzTzx5S ]F

]~axl !D
T,m,Az ,R,Tzz

52b21S ] ln Y
]~axl !D

T,m,Az ,R,Tzz

52~bY!21S (
N,sz

•••
1

N!L3N

]ZN

]~axl !D . ~21!

The partial derivative ofZN in Eq. ~21! can be evaluated two ways leading to mathematically different but physic
equivalent molecular expressions forTzx that may be termed ‘‘virial’’ and ‘‘force’’ forms ofTzx @18,39#. In the present contex
the latter is more transparent. To derive it from Eq.~21! we rewriteZN in Eq. ~18! as

ZN5)
i 51

N E
2sz/2

sz/2

dziE
2sy/2

sy/2

dyiE
axl zi /sz2sx/2

axl zi /sz1sx/2

dxi exp@2bU#5:E
axl z1 /sz2sx/2

axl z1 /sz1sx/2

dx1g1~x1! ~22!

defining an auxiliary quantityg1 as

g1~x1!:5E
2sz/2

sz/2

dz1E
2sy/2

sy/2

dy1)
i 52

N E
2sz/2

sz/2

dziE
2sy/2

sy/2

dyiE
axl zi /sz2sx/2

axl zi /sz1sx/2

dxi exp@2bU#. ~23!

By applying Leibniz’s rule for the differentiation of a parameter integral@48# one obtains

~24!



two
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In Eq. ~24! U(x15axl z1 /sz1sx/2)5U(axl z1 /sz2sx/2) on account of periodic boundary conditions so that the first
terms on the right-hand side cancel out as indicated. Introducing now a new functiong2 defined analogously tog1, the above
argument may be repeatedN21 times, eventually yielding

]ZN

]~axl !
52bE

VN
drN

]U

]~axl !
exp@2bU~rN;Az ,R,sz ,axl !#, ~25!

whereU is given in Eq.~2!. Because of Eq.~1! only r i j
[2] depends onaxl so that Eq.~25! can be written more explicitly as

]ZN

]~axl !
52bE

VN
drN

]UFW
[2]

]~axl !
exp@2bU~rN;Az ,R,sz ,axl !#

5bE
VN

drNexp@2bU~rN;Az ,R,sz ,axl !#(
i 51

N

(
j 51

Ns

u8~r i j
[2] !

xi j
[2]

r i j
[2]

52bE
VN

drNexp@2bU~rN;Az ,R,sz ,axl !#Fx
[2] , ~26!

whereu8(r ):5du/dr, xi j
[2] :5xi2xj

[2] , and Fx
[2] is the x component of the force acting on the areaAz of the upper wall.

Inserting Eq.~26! into Eq. ~21! yields the desired force expression for the shear stressTzx , namely,

AzTzx5S ]F

]~axl ! D
T,m,Az ,R,Tzz

5^Fx
[2]&52^Fx

[1]&, ~27!

where the angular brackets now represent an ensemble average in the grand isostrain ensemble@cf. Eqs.~19! and~20!# and the
far right hand side follows from the principle of mechanical stability.

Another quantity of interest is the shear modulusc44 ~see Ref.@43# for notation! obtained by differentiating Eq.~27!
according to

Azc44:5S ]2F

]~axl !2D
T,m,Az ,R,Tzz

5AzS ]Tzx

]~axl !D
T,m,Az ,R,Tzz

52~bY!21S (
N,sz

•••
1

N!L3N

]2ZN

]~axl !2D 1b21FY21S (
N,sz

•••
1

N!L3N

]ZN

]~axl !D G 2

, ~28!

where the second line follows directly from Eq.~21!. In the first term on the right-hand side of Eq.~28! we have

]2ZN

]~axl !2
52bE

VN
drN

]2UFW
[2]

]~axl !2
exp@2bU#1b2E

VN
drNS ]UFW

[2]

]~axl !
D 2

exp@2bU#, ~29!

where we invoked Eq.~26! and the same logic applies as before@see Eqs.~22!–~25!#. In Eq. ~29! the partial derivative in the
first integrand can be expressed more explicitly as

]2UFW
[2]

]~axl !2
5

]

]~axl ! (i 51

N

(
j 51

Ns

u8~r i j
[2] !

xi j
[2]

r i j
h@2]

52(
i 51

N

(
j 51

Ns Fu9
xi j

[2]2

r i j
[2]2

2
u8

r i j
[2]

1u8
xi j

[2]2

r i j
[2]3G . ~30!
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Because of Eq.~26! the squared partial derivative ofUFW
[2] in

the second integral in Eq.~29! corresponds to (Fx
[2] )2 while

the second term on the second line of Eq.~28! equals
b^Fx

[2]&2 @see Eqs.~21! and ~26!#. Thus, with these identifi-
cations one obtains from Eq.~28!

~31!

where the positive contribution exceeds the negative on
magnitude up to the yield point@49#. Equation~31! shows
that c44 is related to fluctuations of thex component of the
force exerted by the lamella on the upper substrate and to
mean curvature@last term in Eq.~31!# of the lamella-wall
configurational energy hyperplane. For symmetry reas
identically the same expression is obtained by replacing
Eq. ~31! UFW

[2] by UFW
[1] andFx

[2] by Fx
[1] , respectively.

It is important to realize thatc44 can also be computed i
the grand isostress ensemble via

S ]2F

]~axl !2D
T,m,Az ,R,Tzz

5AzS ]Tzx

]~axl ! D
T,m,Az ,R,Tzz

5
Az

@]~axl /]Tzx!#T,m,Az ,R,Tzz

52Az
2S ]2F̂

]~Tzx!
2D

T,m,Az ,R,Tzz

21

,

~32!

which follows directly from Eqs.~10! and ~11!. Employing
Eq. ~20!, the definition ofc44 given in Eq.~28!, and Eqs.~31!
and ~32! can be used to arrive at

c445
1

bAz@^~axl !2&2^axl &2#
5

1

bAz^~axl 2^axl &!2&
>0.

~33!

Equation~33! is one of the key results on which the prese
description of stick-slip transitions in confined films rests

C. The grand isostress potential in the Gaussian limit

In the grand isostress ensemble the shear modulus ca
related to the probabilityP(axl ;^axl &) of finding a virtual
system of this ensemble in a microstate characterized b
certain registryaxl . From Eq.~16! one realizes that

Y5(
axl

exp@bTzxAzaxl #F (
N,sz

••• Q~N,T!G
5:C21(

axl
P~axl ;^axl &!, ~34!
in

he

s
in

t

be

a

where C is a normalization constant. Expanding lnP in a
Taylor series around̂axl & and truncating it after the qua
dratic term, a Gaussian approximation toP is obtained which
can be expressed as

P~axl ;^axl &!5
1

A2p@^~axl !2&2^axl &2#

3expH 2
~axl 2^axl &!2

2@^~axl !2&2^axl &2#
J

~35!

after normalization such that*2`
` d(axl )P51. To establish

the Gaussian character ofP(axl ;^axl &) under the presen
conditions, we computedP(axl ;^axl &) as a histogram in
grand isostress ensemble Monte Carlo simulations@19,20,28#
~see Sec. III!. A convenient measure of the Gaussian char
ter of P(axl ;^axl &) is the fourth-order cumulant defined a

U4 :512
m4

3m2
2

, ~36!

TABLE I. Second (m2) and fourth central moments (m4) of the
probability P(axl ;^axl &) obtained in grand isostress ensemb
Monte Carlo simulations for different interfacial areasAz and shear
stressesTzx at T* 51.00,m* 5211.0, andTzz* 521.00. Also listed
is the fourth-order cumulantU4 @see Eq.~36!#, which should vanish
identically if P(axl ;^axl &) is Gaussian~see text!.

Az* Tzx* 104m2 107m4 U4

63.880 0.00 4.314 5.622 20.006
63.880 0.50 4.490 6.295 20.041
63.880 1.00 4.917 7.507 20.035
63.880 1.50 6.019 12.047 20.108
63.880 1.60 6.485 14.354 20.138
63.880 1.65~rupture point!

91.987 0.00 3.034 2.778 20.006
91.987 0.50 3.069 2.804 0.007
91.987 1.00 3.392 3.505 20.015
91.987 1.50 4.164 5.424 20.043
91.987 1.60 4.492 6.628 20.095
91.987 1.70 4.824 7.545 20.081
91.987 1.80 5.388 10.826 20.169
91.987 1.85~rupture point!

163.533 0.00 1.688 0.843 0.014
163.533 0.50 1.754 0.907 0.017
163.533 1.00 1.882 1.046 0.016
163.533 1.50 2.316 1.607 0.001
163.533 2.00 3.708 4.764 20.155
163.533 2.05~rupture point!

255.520 0.50 1.115 0.363 0.026
255.520 1.00 1.199 0.428 0.007
255.520 2.00 2.197 1.442 0.003
255.520 2.10 2.856 2.854 20.166
255.520 2.15~rupture point!
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1628 57BORDARIER, SCHOEN, AND FUCHS
where

mn :5E
2`

`

d~axl !~axl 2^axl &!nP~axl ;^axl &!, nPN

~37!

is thenth central moment ofP(axl ;^axl &). For a Gaussian
distribution U450 because it is determined completely
m0 andm2, that is, all higher moments can be expressed
terms of the zeroth and second moments. Table I shows
for the numerically generated distributionsP(axl ;^axl &),
uU4u is indeed small even for the largest stresses lis
which are very close to the values at which the stick-s
transition occurs in a finite system~see Sec. IV B!. One no-
tices thatuU4u increases withTzx , indicating that the Gauss
ian character is somewhat less well preserved for larger s
stresses. We note in passing that this points to the fact
strictly speaking, the Gaussian approximation
P(axl ;^axl &) becomes invalid at a~first- or second-order!
phase transition because registry fluctuations are no lo
small enough to justify the truncation of the Taylor-ser
expansion of lnP after the quadratic term@50#. However,
keeping this in mind and becauseuU4u is still not too large
even for the largest registries listed in Table I, we adopt
Gaussian form as a suitable lowest-level approximation
P(axl ;^axl &) henceforth~see Sec. IV B!.

In the present context another, particularly useful, rep
sentation ofP(axl ;^axl &) is obtained by inserting Eq.~33!
into Eq. ~35! so that

P~axl ;^axl &!5AbAzc44~^axl &!

2p

3expF2
b~axl 2^axl &!2Azc44~^axl &!

2 G .
~38!

In the thermodynamic limit (Az→`)

lim
Az→`

P~axl ;^axl &!5d~axl 2^axl &!, ~39!

whered denotes the Diracd function.
For later purposes we also wish to obtain an explicit

pression for the grand isostress potentialF̂ in terms of the
average registrŷaxl &. From Eqs.~14! and~34! one obtains

F̂52b21 lnS C21(
axl

P~axl ;^axl &! D . ~40!

Differentiating this with respect to the shear stressTzx gives

S ]F̂

]Tzx
D

T,m,Az ,R,Tzz

52Az^axl &5
dF̂

d^axl &

3S ]^axl &
]Tzx

D
T,m,Az ,R,Tzz

, ~41!
n
at

d,

ar
at,

er
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where we have also invoked Eq.~19!. The second factor on
the far right-hand side of Eq.~41! is identified asc44

21

through Eqs.~19!, ~20!, and ~33!. Because of Eq.~38! one
also has from Eq.~40!

dF̂

d^axl &
5b21

d ln C

d^axl &
. ~42!

Inserting Eq.~42! into Eq. ~41! we obtain

d ln C52bAzc44d~^axl &!, ~43!

which can be integrated provided an equation of state

known for c44(^axl &) so thatF̂ is completely determined
~see Sec. IV A!.

FIG. 2. The shear stressTzx* as a function of the shear strai
axl * for T* 51.00, m* 5211.00. ~a! Tzz* 521.00; (d): grand
isostrain ensemble, open symbols represent grand isostress r
for various areasAz* 563.880 (h), 91.987 (L), 163.533 (n),
255.520 (,), and 574.921 (x). The full curve is a fit to the grand
isostrain-ensemble data intended to guide the eye. The dashed
corresponds to the Hookean limit~see text!. The horizontal arrows
indicate the shear stress at the rupture points~see text!. ~b! Same as
~a!, but for Tzz* 520.50; Az* 563.880 ~x!, 91.9876~,!, 163.533
~n!, 255.520~L!.
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57 1629STICK-SLIP PHASE TRANSITIONS IN CONFINED . . .
IV. RUPTURE AND YIELD POINTS

In the remainder of this paper all quantities will be giv
in the customary dimensionless~i.e., ‘‘reduced’’! units @51#
indicated by an asterisk, that is energies will be given
units of e, lengths in units ofs, and temperature in units o
kBT/e. Thermodynamic states considered are exclusiv
based uponT* 51.00 andm* 5211.00 for which the LJ
bulk phase is a moderately dense fluid characterized b
~average! number densityn* :5^N&/V* 50.754. Two states
distinguished byTzz* 521.00 and20.50 are investigated
Because ofl * 51.5985 the walls are very slightly stretche
indicated by a distancer * 51.1303 between neares
neighbor wall atoms whereas the minimum of the LJ pot
tial is at r * 521/6.1.1225.

Furthermore, we note that the finite lamella of the infin
film introduced at the beginning of the preceding section
nothing but a virtual construct, entertained to comply w
the principles of thermodynamics. In principle, the lame
can constitute any portion of the film. Thus, it is convenie
to associate the lamella with the computational cell as fa
the Monte Carlo simulations to be presented below are c
cerned. These simulations, carried out in the grand isost
and isostrain ensembles, employ algorithms fully descri
in Refs.@20,32#. The generation of a~numerical representa
tion of a! Markov chain of configurations involves attemp
to displace a film molecule at random, to insert a film m
ecule at a randomly selected point or to remove a rando
chosen film molecule, to change the separation between
walls @32#, and, in the case of the grand isostress ensem
to change the registry at random by a small amount@20# in
addition to the three previous stochastic processes. Bec
attempts to changeax affect all 2NNs distances between film
molecules and wall atoms and furthermore allN2 distances
between film molecules ifsz is altered, one needs to mainta
the length of the relaxation period in systems of differe
sizes, that is for different interfacial areasAz . This is
achieved by fixing the relative frequency of these attem
according toN:N:1(sz) ~grand isostrain ensemble! @32# and
N:N:1(sz):1(ax) ~grand isostress ensemble! @20#.

FIG. 3. The order parameterS(k1)/S(0) as a function ofa from
isostrain ensemble Monte Carlo simulations forT* 51.00,
m* 5211.00, andTzz* 521.00 (h) andTzz* 520.50 (d). The ar-
row indicates the location of the yield point.
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A. Shear stress and shear modulus
in the grand isostrain ensemble

In the grand isostrain ensemble the shear stressTzx(axl )
can be computed as an ensemble average via Eq.~27!. Re-
sults for a monolayer film displayed in Fig. 2 show th
Tzx(axl ) vanishes foraxl * 50.0 and 0.5 for symmetry rea
sons. Forax50.0 the monolayer is solidlike regardless
the load ~i.e., the value ofTzz). The solidlike structure is
established from a plot of the order parameterS(k1)/S(0)
@22# in Fig. 3 where the two-dimensional static structure fa
tor is given by

S~k!5
1

NU(j 51

N

exp~ ik•r j !U2

~44!

and k5(kx ,ky,0). For a perfectly crystalline layer of film

FIG. 4. The shear modulusc44* as a function of the shear strai
axl * for T* 51.00, m* 5211.00; ~a! Tzz* 521.00, ~b!
Tzz* 520.50. The full line represents results obtained in the gra
isostrain ensemble@see Eq.~31!#. Also shown are results obtaine
in the grand isostress ensemble for various areasAz* ~see Fig. 2 for
symbols!. The vertical arrows indicate rupture-point locations f
the various areasAz . The yield point is located at the intersectio
between the full curve and the dashed horizontal line correspon
to c44* 50. The dashed-dotted horizontal line represents the Hook
limit in which c445a0. Note that in the isostrain ensemblec44 may
become negative foraxl .ax

yieldl ~see text!.
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1630 57BORDARIER, SCHOEN, AND FUCHS
molecules atT50 one expects the ratioS(k1)/S(0)51,
wherek1 is the magnitude of the shortest reciprocal latt
vector @22#. Plots of the order parameterS(k1)/S(0) in Fig.
3 show that atax50.0 the monolayer films are indeed so
idlike; the deviation ofS(k1)/S(0) from its ideal value of 1.0
is due to thermal motion of film molecules. Thus, if the wa
are in registry (ax56n,nPN) they act like templates in the
formation of a solidlike monolayer even though the cor
sponding bulk phase is still a liquid~see Sec. IV!. As the film
is progressively sheared, the degree of solidlike order dim
ishes but is still quite substantial at the yield point.
ax50.5 the film is liquidlike as we infer from
S(k1)/S(0).0.0. There is no significant dependence of t
order parameter onTzz so that apparently confinement e
fects are dominating the microscopic structure of the film
accord with earlier findings@37,38#.

On the contrary, a comparison between Figs. 2~a! and
2~b! shows that the yield stress~the maximum value ofTzx)
is about 15% higher for the larger load, indicating tha
more stable film forms under higher loads. The greater rig
ity of the film under higher loads is also reflected by
greater stiffness in the Hookean regime (axl *0). A quan-
titative measure of the stiffness is the constanta0 ~see Table
II !, which is about 12% larger for the system exposed to
higher load. Thus, rheological properties of monolayer fil
are significantly influenced by the thermodynamic con
tions. However, we note in passing that walls commensu

TABLE II. The set of fit parameters$a0 ,a2 ,a4% used to de-
scribe the dependence ofc44 on the shear strain. The constanta0 is
a quantitative measure of rigidity of the film in the Hookean regi
~i.e., axl *0.0) @see Eq.~47!#.

T* m* Tzz* a0* a2* a4*

1.000 211.00 21.00 14.323 2271.382 901.840
1.000 211.00 20.50 12.805 2258.744 911.290
ike
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with the solidlike film are somewhat too idealized with r
spect to the SFA experiment~see Sec. I! @18,20,28#. The
qualitative features and trends just discussed are, on
other hand, not altered greatly for severely confined fil
even if incommensurate walls are considered@18#. We do
therefore not expect the present results to be qualitativ
different if more realistic substrates are employed.

If exposed to a sufficiently small shear strainaxl * *0.0,
Tzx(axl ) depends linearly on the strain according
Hooke’s law@42# @see Figs. 2~a! and 2~b!#. However, as the
strain increases further the film responds increasingly non
early so thatTzx(axl ) reaches a maximum, declines, an
eventually vanishes atax56(n11)/2 for symmetry reasons
@18#. The maximum of the shear stress curve, which arises
account of the plastic response of the film to sufficiently hi
shear strains, determines the so-called yield pointax

yieldl .
Thermodynamic states foraxl <ax

yieldl are mechanically
stable whereas these states become mechanically unsta
axl exceedsax

yieldl . Thus, for axl <ax
yieldl the walls

‘‘stick’’ to the film while they can ‘‘slip’’ across the surface
of the film for axl .ax

yieldl so that the yield point separate
the sticking from the slipping regime.

From the definition of the shear modulusc44 in Eq. ~28! it
is obvious that at the yield point

c44~axl !uaxl 5a
x
yieldl 50. ~45!

From this definition and the fact that the yield point repr
sents a maximum of the shear stress curve it also follows
c44.0 in the sticking regime (axl ,ax

yieldl ) and that
c44,0 in the slipping regime (axl .ax

yieldl ), which can be
verified directly from the plots in Fig. 4. For later purposes
is useful to represent the variation of the shear modulus w
the shear strain by an equation of state. It can be obtaine
expandingc44 in terms of higher-order elastic moduli of th
unstrained solidlike film via
c44~axl !5c44~0!1
1

2!

]2c44

]~axl !2U
axl 50

~axl !21
1

4!

]2c44

]~axl !2U
axl 50

~axl !41•••5 (
k50

`

a2k~axl !2k, ~46!
et

rep-
n

the
hy
-

where a0 corresponds to the shear modulus of a solidl
film in the Hookean limit (axl *0) ~see Figs. 2 and 4!;
coefficients$a2k% (k.0) can be viewed as higher-order ela
tic moduli of the unstrained solidlike film@33#. Molecular
expressions for the higher-order elastic moduli can be
rived in principle by differentiatingc44 in Eq. ~28! with re-
spect toaxl . For the unstrained solidlike film odd deriva
tives ] (2k11)c44(axl )/](axl )(2k11)uaxl 50 vanish

identically when averaged because they involve odd pow
of xi j

[2] @see Eq.~30!#. Therefore, Eq.~46! involves only even
powers of axl . Even though the expansion coefficien
could in principle be computed via their molecular expre
sions, these turn out to be far too complex to be evalua
numerically in grand isostrain ensemble Monte Carlo sim
e-

rs

-
d
-

lations @49#. It is therefore more sensible to obtain the s
$a2k% by fitting the polynomial in Eq.~46! to c44(axl ) over
a certain range of shear strains. In practice an excellent
resentation ofc44(axl ) is obtained by truncating the sum i
Eq. ~46! after the third term@33#, which yields

c445a01a2~axl !21a4~axl !41O@~axl !6#. ~47!

Plots in Fig. 4 show that in the Hookean regime (axl *0)
c44. const, declines steadily with increasingaxl up to the
yield point at which by definitionc4450 @see Eq.~45!#, and
becomes negative at larger shear strains. The smallerc44 the
more pronounced is the nonlinear, plastic response of
film to an applied shear strain. It is particularly notewort
that the representation ofc44 is excellent even for states be
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yond the yield point that are mechanically unstable beca
c44,0 @33#. Values for the set$a0 ,a2 ,a4% are listed in Table
II for the thermodynamic states considered here.

B. Rupture points and finite-size effects

In the grand isostress ensemble, on the other hand,c44 is
positive semidefinite and therefore cannot become nega
according to Eq.~33!. Consequently, thermodynamic stat
characterized bŷ axl &>^ax

yieldl & are inaccessible. Sinc
c4450 at the yield point one expects registry fluctuations
diverge at this point according to Eq.~33!. The restriction
c44(^axl &)>0 in the grand isostress ensemble as compa
to the grand isostrain ensemble is akin to the one enco
tered in studies of liquid-gas phase equilibria employin
say, the canonical and grand canonical ensembles. Bec
the density is fixed in the former, thermodynamic states p
taining to the two-phase liquid-gas regime are access
even though these states aremechanicallyunstable, that is,
for these states the isothermal compressibi
kT :521/V(]V/]P),0 in a finite system whereP is the
bulk pressure andV is the volume. In the grand canonic
ensemble, on the other hand, the constraint of fixedn is lifted
so that this ensemble has one additional degree of freed
One can then prove thatkT is positive definite and conse
quently thermodynamic states in the liquid-gas two-ph
region become inaccessible because of theirthermodynamic
instability @46#.

The same can be said with regard to the relation betw
grand isostress and isostrain ensembles where the forme
one additional degree of freedom compared with the la
because the registry is not fixed@see Eqs.~15! and ~16!#.
Thus, it is tempting to perceive the average registry^axl & as
the analog of the average densityn in the grand canonica
ensemble and to viewc44

21}^(axl )2&2^axl &2 @see Eq.
~33!# as the analog ofkT}^N2&2^N&2 @46# in this ensemble.
This notion is supported further by noting that^axl & and
c44

21 in Eq. ~33! are related to first and second derivatives

F̂ with respect toTzx @see Eqs.~19! and~20!# just like n and
kT are related to first and second derivatives of the gr
potentialV with respect tom @37#. In this spirit and within
the framework of the quasistatic description of the SFA
periment it seems fruitful to regard the transition from sti
to slip conditions at the yield point as a continuous ph

transition because (]F̂/]Tzx)T,m,Az ,R,Tzz
}^ax

yieldl & remains

finite and (]2F̂/]Tzx
2 )T,m,Az ,R,Tzz

→` @see Eqs.~19!, ~20!,
~33!, Figs. 2, and 4#.

However, an inspection of Figs. 2 and 4 shows that
system in the grand isostress ensemble undergoes a tran
from stick to slip conditions prior to the yield point as r
flected by a divergence of the registry fluctuations at
called ‘‘rupture points’’ characterized b
^ax

rupturel &,^ax
yieldl &. We emphasize that up to the ruptu

point Eq.~47! provides a good representation ofc44(^axl &)
in the grand isostress ensemble with the same set of va
for $a0 ,a2 ,a4% obtained by fitting Eq.~47! to c44(axl ) in
the grand isostrain ensemble~see Fig. 4!. Thus,

c44~^axl &!5c44~axl ! ;^axl &<^ax
rupturel &. ~48!

Closer scrutiny seems to reveal a small but systematic tr
of c44 obtained in the grand isostress ensemble to be sm
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than its grand isostrain counterpart. However, given an e
mated 5% for the mutual error bars on both data sets th
deviations are considered insignificant.

The origin of the rupture points may be rationalized
follows. If ^axl & is close enough to the yield point there is
nonvanishing probabilityP(axl ;^axl &).0 for registries to
exceed^ax

yieldl & on average. These states arein principle
inaccessible in the grand isostress ensemble becausec44
would be negative which is precluded on account of E
~33!. One therefore expects any finite film to become th
modynamically unstable at^ax

rupturel & prior to the yield point
if the probability for registries exceeding the yield point
nonzero. In the actual grand isostress ensemble Monte C
simulations 0.5–2% of all configurations generated
^ax

rupturel & are characterized by registries exceedi
^ax

yieldl & under the present conditions. Consequently the fi
undergoes a transition from stick to slip conditions earl
than at ^ax

yieldl &. For shear stresses in the interv
Tzx

rupture<Tzx<Tzx
yield ~where Tzx

rupture and Tzx
yield correspond to

the shear stresses at rupture and yield points, respectiv!
one observes a persistent increase of the lateral displace
of the upper substrate wall as a function of the Monte Ca
‘‘time.’’ This displacement is irregular in that it is characte
ized by short periods of variable length over which the up
substrate remains stationary alternating with periods of m
tion. Similar effects have been reported experimentally
squalane films, which were, however, sheared in real t
@52#.

One also notices from Table I a general trend ofm2 and
m4 to decrease with increasingAz at fixedTzx even for reg-
istries for which the value ofuU4u is quite small so that the
Gaussian approximation toP(axl ;^axl &) is still well justi-
fied. The decrease of the central moments indicates
P(axl ;^axl &) becomes increasingly peaked around^axl &.
In other words, registry fluctuations decrease withAz @see
Eqs. ~35! and ~39!#. At the same time the location of th
rupture point shifts towards the yield point asAz becomes
larger, i.e., asP(axl ;^axl &) becomes more peaked a
^axl &. However, for any finite interfacial areaAz there will
always be a finite spread ofP(axl ;^axl &) around^axl &.
Because of the diminishing extent of registry fluctuatio
@i.e., the increasing sharpness ofP(axl ;^axl &)] with in-
creasing interfacial area one expects^ax

rupturel &5 f (Az), a
conjecture confirmed by the plots in Fig. 5. However, o
notes from Fig. 5 a fairly weak dependence of^ax

rupturel & on
the thermodynamic state.

Furthermore, in the thermodynamic lim
limAz→`^ax

rupturel &5^ax
yieldl & should hold because of Eq

~39! ~see Fig. 5!. Based on this logic and the previous obse
vations it seems plausible to introduce a ‘‘rupture lengt
j r ,

j r~T,m,Az ,R,Tzz,Tzx!>A^~axl !2&2^axl &2, ~49!

as a measure of an upper limit for registry fluctuations wh
the equal sign holds at the rupture point. Because of Eq.~33!,
Eq. ~49! implies

c44>
1

bAzj r
2

, ~50!
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where again the equal sign applies at the rupture point. Eq
tion ~50! states that in any finite film the degree of plastic
~reflected by the value ofc44) must not exceed a certai
~system-size dependent! critical value for the film to remain
thermodynamically stable in the sticking regime. The deg
of plasticity may be cast quantitatively as

dc44

d^axl &
u^axl &5^ax

yieldl &52a2^axl &14a4^axl &3,0,

~51!

that is, by the deviation ofc44(^axl &) from Hookean behav-
ior defined by

dc44

d^axl &
50 ;^axl &. ~52!

Note that a Hookean film has no yield point becau
c445a0.0 @see Eq.~47!# and that registry fluctuations can
not diverge because of

bAzc445bAza05
1

^~axl !2&2^axl &2
Þ0. ~53!

Equation~53! shows that for a Hookean film a yield poin
does not exist~infinite-system limit!. Thus, a solidlike
Hookean film cannot be liquified by applying a shear stra
Employing once again the analogy between yield a
~liquid-gas! critical points advocated here, a Hookean fi
may be viewed as an idealization in the spirit of the ideal-
model.

To estimate the rupture length we employ Eqs.~47! and
~50! and get

j r5$bAz@a01a2^ax
rupturel &21a4^ax

rupturel &4#%21/2.
~54!

FIG. 5. The rupture-point location̂ax
rupturel & as a function of

Az
21/2 for T* 51.00, m* 5211.00, Tzz* 521.00 (L), and

Tzz* 520.50 (1). The straight lines represent fits of the empiric
scaling law @see Eq.~55!# ~see text!. Yield-point locations from
corresponding grand isostrain ensemble Monte Carlo simulat
@(j), Tzz* 521.00; (d), Tzz* 520.50# agree well with the extrapo
lated (Az*

21/250) grand isostress ensemble data; only grand
stress ensemble data were included in the fit.
a-

e

e

.
d

s

Results plotted in Fig. 6 indicate thatj r decreases with in-
creasingAz as expected. The dependence ofj r on the ther-
modynamic state is again weak because the rupture-p
location itself is found to depend only marginally on th
precise nature of the state~see Fig. 5!. Comparison with Fig.
5 shows that the rupture-point location shifts towards
yield point over the same range of interfacial areas a
should. We emphasize that the yield-point location can
calculated directly in the grand isostrain ensemble from
ther maxaxl Tzx(axl ) or c44(axl )50 ~see Figs. 2 and 4!.
Thus, the reliability of the rupture-point location obtained
the grand isostress ensemble can be verified by extrapola
of ^ax

rupturel & to the thermodynamic limit (Az→`) where
^ax

rupturel &5^ax
yieldl & according to the foregoing reasonin

~see Sec. IV C!.

C. Scaling behavior

Because of the pronounced system-size dependenc
both ^ax

rupturel & and j r it is instructive to investigate the
scaling behavior of both quantities withAz . This is facili-
tated by plottinĝ ax

rupturel & as a function of 1/AAz in Fig. 5,
which gives a nearly perfect representation of the Mo
Carlo data regardless of the thermodynamic state of the fi
Note that in Fig. 5 the yield-point̂ax

yieldl & obtained by fit-
ting

^ax
rupturel &5^ax

yieldl &1
a

AAz

, a,0 ~55!

to the simulation data~taking ^ax
yieldl & and a as fit param-

eters! in a least-squares fashion agrees very well withax
yieldl

determined independently in a corresponding grand isost
ensemble Monte Carlo simulation under the same thermo
namic conditions. The empirical scaling law for^ax

rupturel &
given in Eq.~55! may be employed in Eq.~47! to expressc44
at the rupture point in terms ofAz and the parametera.
Noting thatc44(^ax

yieldl &)50 one obtains the scaling rela
tion

FIG. 6. The rupture lengthj r* as a function ofAz*
21/4 @see Eq.

~57!# for T* 51.00, m* 5211.00, Tzz* 521.00 ~L!, and
Tzz* 520.50 (1). The straight line is calculated from Eq.~57! using
$a2 ,a4% from Table II and$a,^ax

yieldl * &% from the fit of Eq.~55! to
the simulation data shown in Fig. 5~see text!.ns

-
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c44~^ax
rupturel &!5a

dc44

d^axl &
U
^axl &5^ax

yieldl &

Az
21/21O~Az

21!

~56!

in a macroscopic system~i.e., asAz→`), which is again
determined by the degree of plasticity@see Eq.~51!#. Since
the rupture-point location coincides with the yield point a
cording to Eq.~55! in the thermodynamic limit, it is not
surprising thatc44 vanishes asAz→`. One therefore expect
the rupture length to vanish in that limit too. From Eqs.~54!
and ~56! one obtains the scaling relation for the ruptu
length as

j r5Fba
dc44

d^axl &
U
^axl &5^ax

yieldl &
G21/2

@Az
1/21O~Az

0!#21/2

.Fba
dc44

d^axl &
U
^axl &5^ax

yieldl &

21/2

Az
21/4, ~57!

which is confirmed by the plot in Fig. 6. In other words, th
critical registry fluctuations at the rupture point are related
the degree of plasticity at the yield point. It is furthermo
noteworthy from the plot that the dependence ofj r on the
interfacial area is in accord with the scaling law despite
relative smallness of the simulation cells employed.

Another interesting observation can be made from
scaling law in Eq.~56! with respect to the values of th
thermodynamic potential at yield and rupture points, resp
rie
m

ic
t.

g
b

ni
ive

s

a
to
-

o

e

e

c-

tively. This can be demonstrated by integrating Eq.~43! with
the aid of Eq.~47! and inserting the resulting expression in
Eq. ~40!. Based upon the Gaussian approximation
P(axl ;^axl &) ~which should be valid only approximatel
at the rupture point, see Sec. III B! one eventually arrives a

F̂5AzS a0

2
^axl &21

a2

4
^axl &41

a4

6
^axl &6D>0, ~58!

which is a physically sensible expression becauseF̂50 for
the unsheared solidlike film and becauseF̂ increases the
more the film is exposed to a shear stress. This follows fr
Eqs.~47! and ~58! because of

dF̂

d^axl &
5Az^axl &~a01a2^axl &21a4^axl &4!

5Az^axl &c44~^axl &!>0 ;^axl &<^ax
yieldl &.

~59!

However, it is more convenient to turn to the correspond
~generalized Gibbs! free energy density rather than emplo

ing the thermodynamic potentialF̂ itself. Therefore, we in-

troduceF̂
˜

:5Az
21F̂, which is an intensive quantity. Let u

now computeF̂
˜

(^ax
rupturel &) including only terms up to the

order ofO(Az
21/2). From Eqs.~55! and ~58! we obtain
DF̂
˜

:5F̂
˜

yield2F̂
˜

rupture.2aAz
21/2c44~^ax

rupturel &!52
a

bAz
3/2@^~ax

rupturel !2&2^ax
rupturel &2#

52ab21Az
23/2 1

j r
2

.2a2^ax
yieldl &

dc44

d^axl &
U
^axl &5^ax

yieldl &

Az
21>0, ~60!
ial
y

se

-
-

ace.

to
of
which is the generalized Gibbs free-energy density bar
for the stick-slip transition at the rupture point for a syste
with finite interfacial area. Equation~60! shows that the free
energy density barrier depends on the degree of plast
defined in Eq.~51! of the sheared film at the yield poin

Because of Eq.~33! this is equivalent to saying thatDF̂
˜

is
determined by the rupture length, that is by the critical re
istry fluctuations at the rupture point. The generalized Gib
free-energy density as defined here is positive semidefi
becausec44 in the grand isostress ensemble is posit
semidefinite@see Eq.~33!#. This implies a,0 (Az finite!
becausêax

yieldl & is the largest possible~average! registry in
this ensemble. The generalized Gibbs free-energy den
barrier depends on the thermodynamic state througha, a2,
a4 @see Eq.~51!#, and the yield point location. To undergo
transition from stick to slip conditions the system has
r

ity

-
s
te

ity

overcomeDF̂
˜

, which decreases with increasing interfac
area. Because of Eq.~58! the generalized Gibbs free-energ

density F̂
˜

,F̂
˜

rupture;^axl &,^ax
rupturel & so that the thresh-

old value DF̂
˜

is approached from above. Thus, becau
^axl &5 f (Tzx) is a monotonically increasing function~see

Figs. 2 and 4! ~and thereforeF̂
˜

is a monotonically decreas
ing function! of Tzx the film has to be exposed to a suffi
ciently large shear stress before this transition can take pl
This critical stress increases withAz but cannot exceed the

yield stress becauseDF̂
˜

is positive semidefinite.

V. DISCUSSION AND CONCLUSIONS

In this article we investigated the transition from stick
slip conditions in monolayer films under shear composed
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spherically symmetric film molecules that are confined
tween discretely structured, commensurate walls. Shearin
effected under conditions closely resembling those of co
sponding SFA experiments in that the normal load on
walls is maintained in the simulations as well as the tempe
ture and the chemical potential of the film. Since in an S
experiment one usually controls the shear stress acting on
film, we employ the grand isostress ensemble in which
stress tensor componentTzx is a natural parameter of th
relevant thermodynamical potential. From a theoretical p
spective it is instructive to supplement these calculations
employing a corresponding grand isostrain ensemble
which the relative transverse alignment of the walls is c
trolled rather than the conjugate shear stressTzx . Our main
results can be summarized as follows.

~1! The shear modulus can be expressed rigorously
terms of registry fluctuations, indicating thatc44 is positive
semidefinite@see Eq.~33!#. From this it follows that in the
grand isostress ensemble thermodynamic states becom
stable if the~average! registry ^axl & exceeds that of the
yield point defined byc44(^ax

yieldl &)50. At the yield point
registry fluctuations diverge because the shear modulus
ishes. Up to the yield point registry fluctuations increa
steadily and monotonically becausec44 is a smooth, nonsin-
gular function of^axl & ~see Figs. 2 and 4!.

~2! In the thermodynamic limit (Az→`) a transition from
stick to slip conditions will therefore occur at the yield poi
where c44

21 is singular so that the stick-slip transition ma
legitimately be viewed as a phase transition in the therm
dynamic sense.

~3! In a finite system (Az,`) the stick-slip phase transi
tion is subject to a finite-size effect so that the transit
occurs at rupture points prior to the yield point~see Figs. 2
and 4!. The rupture-point location depends on the film-w
interfacial area and follows a simple empirically establish
scaling law^ax

rupturel &}Az
21/2 ~see Fig. 5! so that in the ther-

modynamic limit the locations of rupture and yield poin
coincide.

~4! In a finite system a transition from stick to slip cond
tions occurs at a rupture point because there is a nonvan
ing probability for the registry to exceed̂ax

yieldl & on aver-
age due to nonvanishing registry fluctuations. For regist
above the yield pointc44 would be negative which is pre
cluded in the grand isostress ensemble on account of
~33!. Consequently, these fluctuations have to be limited
the system is to remain in the sticking regime. By introdu
ing the concept of a rupture lengthj r @see Eq.~49!# we
observe a relative root mean square fluctuation of the reg
j r /^ax

rupturel & of about 8215% depending on the interfacia
area. Despite the relative smallness of the simulation
j r}Az

21/4 as one would expect for a macroscopic system~see
Fig. 6!.

~5! Stick-slip phase transitions are notdriven by shear-
induced melting of the confined film~see Fig. 3!.
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That shear-induced melting does notdrive the stick-slip
transition is in accordance with earlier investigations
which the shear melting point is located through characte
tic maxima in the heat capacity, the compressibility, and
expansion coefficient of the film and is found to occur on
at registries significantly above the yield point@53#. One also
knows that film molecules do not diffuse on the typical tim
scales of a fluid for all registries up to and significan
above the yield point@54#. From the perspective of the gran
isostress ensemble the film would therefore have to bec
thermodynamically unstableprior to melting. However, it
should be noted thatafter the stick-slip phase transition ha
occurred~i.e., when the registry diverges! the film will lose
its solidlike structure accompanied by drainage, thus rap
becoming disordered and therefore liquidlike. In this sen
the stick-slip transition is thecauseof shear-induced melting
of the film and triggers it contrary to what was surmised
Ref. @22#.

The earlier studies@18,30,32,33,39,53# also show that
shearing is a continuous process. This notion is once a
confirmed here, reflected in particular by the continuo
variation of the shear modulus with the shear stress in
grand isostress ensemble. Because of this one also ex
the grand isostress potential to be a continuous function u
and at the yield point because in an infinite systemc4450 is
thermodynamically permissible. This implies, however, th
the first derivative of the grand isostress potential@see Eq.
~19!# remains finite at the yield point but that the seco
derivative, related toc44

21 , diverges, which is the ‘‘finger-
print’’ of a continuous phase transition.

Perhaps the most prominent continuous phase trans
occurs at the critical point of a fluid at which density flu
tuations diverge while the densityn itself remains finite.
Based upon the analogŷax

yieldl &⇔n and c44
21⇔kT advo-

cated in Sec. IV B it is tempting to associate the stick-s
phase transition with a novel, shear-stress driven critical p
nomenon. From this angle the yield point is the associa
critical point. In fact, it has been argued@55# that stick-slip
transitions may arise on account of self-organized critica
if a material is exposed to a sufficiently large shear stress~or
strain!, a concept that has been applied recently to frict
phenomena@56#. Consequently, the rupture point has to
viewed as a shear-critical point shifted on account of
~artificial! finiteness of the system. The rupture lengthj r is a
quantitative measure of this shift, vanishing only in the th
modynamic limit.
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